Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text.)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig8 ErgüzenAppSci2018 8-6.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig4 SprengholzQuantMethSci2018 14-2.png|240px]]</div>
'''"[[Journal:Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system|Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system]]"'''
'''"[[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system]]"'''


Recently, the use of the internet has become widespread, increasing the use of mobile phones, tablets, computers, internet of things (IoT) devices, and other digital sources. In the healthcare sector, with the help of next generation digital medical equipment, this digital world also has tended to grow in an unpredictable way such that nearly 10 percent of global data is healthcare-related, continuing to grow beyond what other sectors have. This progress has greatly enlarged the amount of produced data which cannot be resolved with conventional methods. In this work, an efficient model for the storage of medical images using a distributed file system structure has been developed. With this work, a robust, available, scalable, and serverless solution structure has been produced, especially for storing large amounts of data in the medical field. Furthermore, the security level of the system is extreme by use of static Internet Protocol (IP) addresses, user credentials, and synchronously encrypted file contents. ('''[[Journal:Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system|Full article...]]''')<br />
The reproduction of findings from psychological research has been proven difficult. Abstract description of the data analysis steps performed by researchers is one of the main reasons why reproducing or even understanding published findings is so difficult. With the introduction of [[Jupyter Notebook]], a new tool for the organization of both static and dynamic [[information]] became available. The software allows blending explanatory content like written text or images with code for preprocessing and analyzing scientific data. Thus, Jupyter helps document the whole research process from ideation over data analysis to the interpretation of results. This fosters both collaboration and scientific quality by helping researchers to organize their work. This tutorial is an introduction to Jupyter. It explains how to set up and use the notebook system. While introducing its key features, the advantages of using Jupyter Notebook for psychological research become obvious. ('''[[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Full article...]]''')<br />
<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system|Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system]]
: ▪ [[Journal:DataCare: Big data analytics solution for intelligent healthcare management|DataCare: Big data analytics solution for intelligent healthcare management]]
: ▪ [[Journal:DataCare: Big data analytics solution for intelligent healthcare management|DataCare: Big data analytics solution for intelligent healthcare management]]
: ▪ [[Journal:Application of text analytics to extract and analyze material–application pairs from a large scientific corpus|Application of text analytics to extract and analyze material–application pairs from a large scientific corpus]]
: ▪ [[Journal:Application of text analytics to extract and analyze material–application pairs from a large scientific corpus|Application of text analytics to extract and analyze material–application pairs from a large scientific corpus]]
: ▪ [[Journal:Information management in context of scientific disciplines|Information management in context of scientific disciplines]]

Revision as of 15:31, 6 August 2018

Fig4 SprengholzQuantMethSci2018 14-2.png

"Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system"

The reproduction of findings from psychological research has been proven difficult. Abstract description of the data analysis steps performed by researchers is one of the main reasons why reproducing or even understanding published findings is so difficult. With the introduction of Jupyter Notebook, a new tool for the organization of both static and dynamic information became available. The software allows blending explanatory content like written text or images with code for preprocessing and analyzing scientific data. Thus, Jupyter helps document the whole research process from ideation over data analysis to the interpretation of results. This fosters both collaboration and scientific quality by helping researchers to organize their work. This tutorial is an introduction to Jupyter. It explains how to set up and use the notebook system. While introducing its key features, the advantages of using Jupyter Notebook for psychological research become obvious. (Full article...)

Recently featured:

Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system
DataCare: Big data analytics solution for intelligent healthcare management
Application of text analytics to extract and analyze material–application pairs from a large scientific corpus