Difference between revisions of "User:Shawndouglas/sandbox/sublevel1"

From LIMSWiki
Jump to navigationJump to search
 
(111 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[File:Blood in tubes (9617266704).jpg|left|250px]]Blood serum or serology assays come in three common varieties: LFA, enzyme-linked immunosorbent assay (ELISA), or neutralization assay.<ref name="JHSerology20">{{cite web |url=https://www.centerforhealthsecurity.org/covid-19TestingToolkit/serology/Serology-based-tests-for-COVID-19.html |title=Serology tests for COVID-19 |author=Center for Health Security |publisher=Johns Hopkins University |date=26 August 2021 |accessdate=06 September 2021}}</ref> As discussed prior, LFAs are intended to be rapid point-of-care tools for qualitatively testing body fluids for patient antibodies or viral antigen. The ELISA is, in contrast, a more lab-bound method which produces results that are qualitative or quantitative. In the context of COVID-19 testing, ELISA tests for the presence of patient antibodies in a given specimen based upon whether or not an interaction is observed with the viral proteins present on the test plate. However, even if antibodies are present, ELISA isn't able to tell a clinician if those antibodies are able to protect against future infection. Neutralization assays are the lengthiest to complete, taking from three upwards to five days.<ref name="JHSerology20" /> This is largely due to the fact that the assay depends on culturing cells that encourage growth of the target virus. Afterwards, introduced patient antibodies, if present, will fight to prevent viral infection of cells. This process is performed in decreasing concentrations, giving the clinician an opportunity to "visualize and quantify how many antibodies in the patient serum are able to block virus replication."<ref name="JHSerology20" /> In contrast to ELISA, a neutralization assay is able to determine if a patient's antibodies are actively fighting against the target virus, even after recovering from the infection. In November 2020, the FDA granted an EUA to the first ELISA-based serology test to detect nuetralizing antibodies from recent or prior SARS-CoV-2 infection.<ref name="FDACoronaNeut20">{{cite web |url=https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-test-detects-neutralizing-antibodies-recent-or |title=Coronavirus (COVID-19) Update: FDA Authorizes First Test that Detects Neutralizing Antibodies from Recent or Prior SARS-CoV-2 Infection |author=Food and Drug Administration |publisher=Food and Drug Administration |date=06 November 2020 |accessdate=18 November 2020}}</ref>
{{Saved book
|title=Introduction to Quality and Quality Management Systems
|subtitle=
|cover-image=Time-Quality-Money.png
|cover-color=#fffccc
| setting-papersize = A4
| setting-showtoc = 1
| setting-columns = 1
}}


Johns Hopkins' Center for Health Security [https://www.centerforhealthsecurity.org/covid-19TestingToolkit/serology/Serology-based-tests-for-COVID-19.html appears to be tracking] serology-based COVID-19 tests that are in development or have been approved in various parts of the globe. However, for the most up-to-date list of serology tests that have received EUAs in the United States, the FDA's [https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-serology-and-other-adaptive-immune-response-tests-sars-cov-2 EUA list] appears to be the best source. As of September 2021, the FDA shows 88 serology assays approved for diagnostic use in the U.S. Of those 88, sixteen are explicitly listed as being ELISA-based.
==''Introduction to Quality and Quality Management Systems''==
{{ombox
| type      = content
| style    = width: 500px;
| text      = This book should not be considered complete until this message box has been removed. This is a work in progress.
}}
The goal of this short volume is to act as an introduction to the quality management system. It collects several articles related to quality, quality management, and associated systems.


A review of Johns Hopkins' tracking list showed more LFA-based tests among those approved in other parts of the world. Among their list of those still in development, an LFA stands out for integrating CRISPR detection.<ref name="MBAProto20">{{cite web |url=https://mammoth.bio/wp-content/uploads/2020/03/Mammoth-Biosciences-A-protocol-for-rapid-detection-of-SARS-CoV-2-using-CRISPR-diagnostics-DETECTR.pdf |format=PDF |title=A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR |publisher=Mammoth Biosciences |date=02 March 2020 |accessdate=09 April 2020}}</ref> CRISPR (clustered regularly interspaced short palindromic repeats) represents bacterial and archaeal DNA sequences derived from DNA fragments of previous infection. This genetic material can then be used as an activator of biomarkers when attached RNA "guides" find a match with target viral RNA in patient specimen.<ref name="NatureCRISPR18">{{cite web |url=https://www.nature.com/articles/d41586-018-02200-0 |title=CRISPR’s powers unleashed for disease detection |work=Nature - Research Highlights |date=16 February 2018 |accessdate=09 April 2020}}</ref> This CRISPR-based LFA, called DETECTR, was further described in a paper published in October 2020, with the authors concluding it could be used "as a complementary technically independent approach to qRT-PCR, thereby increasing the testing capacity of medical microbiological laboratories and relieving the existent PCR-platforms for routine non-SARS-CoV-2 diagnostic testing."<ref name="BrandsmaRapid20">{{cite journal |title=Rapid, sensitive and specific SARS coronavirus-2 detection: A multi-center comparison between standard qRT-PCR and CRISPR based DETECTR |journal=The Journal of Infectious Diseases |author=Brandsma, E.; Verhagen, H.J.M.P.; van de Laar, T.J.W. et al. |volume=In Print |at=jiaa641 |year=2020 |doi=10.1093/infdis/jiaa641 |pmid=33038252 |pmc=PMC7665660}}</ref>
;1. What is quality?
:''Key terms''
:[[Quality (business)|Quality]]
:[[Quality assurance]]
:[[Quality control]]
:''The rest''
:[[Data quality]]
:[[Information quality]]
:[[Nonconformity (quality)|Nonconformity]]
:[[Service quality]]
;2. Processes and improvement
:[[Business process]]
:[[Process capability]]
:[[Risk management]]
:[[Workflow]]
;3. Mechanisms for quality
:[[Acceptance testing]]
:[[Conformance testing]]
:[[Clinical quality management system]]
:[[Continual improvement process]]
:[[Corrective and preventive action]]
:[[Good manufacturing practice]]
:[[Malcolm Baldrige National Quality Improvement Act of 1987]]
:[[Quality management]]
:[[Quality management system]]
:[[Total quality management]]
;4. Quality standards
:[[ISO 9000]]
:[[ISO 13485]]
:[[ISO 14000|ISO 14001]]
:[[ISO 15189]]
:[[ISO/IEC 17025]]
:[[ISO/TS 16949]]
;5. Quality in software
:[[Software quality]]
:[[Software quality assurance]]
:[[Software quality management]]


==References==
<!--Place all category tags here-->
{{Reflist|colwidth=30em}}

Latest revision as of 19:46, 9 February 2022

Introduction to Quality and Quality Management Systems
Time-Quality-Money.png
This user book is a user-generated collection of LIMSWiki articles that can be easily saved, rendered electronically, and ordered as a printed book.
If you are the creator of this book and need help, see Help:Books.

Edit this book: Book Creator · Wikitext
Select format to download:

PDF (A4) · PDF (Letter)

Order a printed copy from these publishers: PediaPress
Start ] [ FAQ ] [ Basic help ] [ Advanced help ] [ Feedback ] [ Recent Changes ]


Introduction to Quality and Quality Management Systems

The goal of this short volume is to act as an introduction to the quality management system. It collects several articles related to quality, quality management, and associated systems.

1. What is quality?
Key terms
Quality
Quality assurance
Quality control
The rest
Data quality
Information quality
Nonconformity
Service quality
2. Processes and improvement
Business process
Process capability
Risk management
Workflow
3. Mechanisms for quality
Acceptance testing
Conformance testing
Clinical quality management system
Continual improvement process
Corrective and preventive action
Good manufacturing practice
Malcolm Baldrige National Quality Improvement Act of 1987
Quality management
Quality management system
Total quality management
4. Quality standards
ISO 9000
ISO 13485
ISO 14001
ISO 15189
ISO/IEC 17025
ISO/TS 16949
5. Quality in software
Software quality
Software quality assurance
Software quality management