Template:Past, Present, and Future of Cannabis Laboratory Testing and Regulation in the United States/Laboratory testing of cannabis/Methods and guidelines/Terpene testing

From LIMSWiki
Jump to navigationJump to search

Identifying and quantifying terpenes is one of the more difficult tasks facing laboratorians, according to Cassidy[1]:

Terpenes present an analytical challenge because they are nonpolar and structurally similar, and many structural isomers exist. Mass spectrometry (MS) cannot distinguish terpenes that co-elute from a GC column because many have the same molecular weight and share fragment ions.

Goldman et al. share Cassidy's view about MS, though reminding that it has some benefits over flame ionization detection (FID). They note that recent MS methods add another level of confirmation for terpene identification using retention indexing and electron impact mass spectral matching.[2]

Of course, types of gas chromatography work; but like cannabinoids, terpenes can degrade with the high heat of gas chromatography.[3] Combined with the problems mentioned above, highly specialized gas chromatography processes that include additional steps, such as full evaporation technique headspace gas chromatography flame ionization detection (FET-HS-GC-FID), can be used to produce cleaner results, particularly for volatile components.[1] It's less clear if high-performance liquid chromatography (HPLC) is used frequently; some entities such as Eurofins Experchem Laboratories claim HPLC works best for them[3], while others such as Restek Corporation claim the method is problematic at best.[4]

Overall, various published methods for terpene identification and analysis include[1][2][5][6][7][3][8][9]:

  • Full evaporation technique–headspace–gas chromatography–flame ionization detection (FET-HS-GC-FID; tends to be semi-quantitative)
  • Gas chromatography–flame ionization detection (GC-FID)
  • Gas chromatography–mass spectrometry (GC-MS)
  • Gas chromatography–tandem-mass spectrometry (GC-MS/MS)
  • Gas chromatography–vacuum ultraviolet spectroscopy (GC-VUV)
  • Headspace–gas chromatography–mass spectrometry (HS-GC-MS)
  • Headspace–solid-phase microextraction (HS-SPME)
  • High-performance liquid chromatography (HPLC; may have limitations due to coelution of terpenes and cannabinoids at certain ranges[4])
  1. 1.0 1.1 1.2 Cassiday, L. (October 2016). "The Highs and Lows of Cannabis Testing". INFORM. American Oil Chemists' Society. https://www.aocs.org/stay-informed/inform-magazine/featured-articles/the-highs-and-lows-of-cannabis-testing-october-2016. Retrieved 05 August 2022. 
  2. 2.0 2.1 Goldman, Stephen; Bramante, Julia; Vrdoljak, Gordon; Guo, Weihong; Wang, Yun; Marjanovic, Olivera; Orlowicz, Sean; Di Lorenzo, Robert et al. (15 June 2021). "The analytical landscape of cannabis compliance testing" (in en). Journal of Liquid Chromatography & Related Technologies 44 (9-10): 403–420. doi:10.1080/10826076.2021.1996390. ISSN 1082-6076. https://www.tandfonline.com/doi/full/10.1080/10826076.2021.1996390. 
  3. 3.0 3.1 3.2 Adams, T.; Bertone, M. (30 November 2016). "Near Infrared, GC and HPLC Applications in Cannabis Testing". Cannabis Industry Journal. Innovative Publishing Co. LLC. https://cannabisindustryjournal.com/column/near-infrared-gc-and-hplc-applications-in-cannabis-testing/. Retrieved 05 August 2022. 
  4. 4.0 4.1 Herring, T. (29 December 2016). "Can HPLC-UV Be Used For Terpenes Analysis In Cannabis?". ChromaBLOGraphy. Restek Corporation. Archived from the original on 12 April 2019. https://web.archive.org/web/20190412051141/https://blog.restek.com/?p=33071. Retrieved 05 August 2022. 
  5. "Terpene Analysis". SC Labs, Inc. https://www.sclabs.com/terpene-analysis/. Retrieved 05 August 2022. 
  6. "Cannabis Testing: Quality You Can Trust" (PDF). Sigma-Aldritch Co. LLC. 2016. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/116/856/cannabis-testing.pdf. Retrieved 05 August 2022. 
  7. Hodgson, A.; Cochran, J. (12 February 2018). "Vacuum Ultraviolet Spectroscopy: A New Tool for Gas Chromatography Analysis of Terpenes in Flavours and Fragrances". LC GC 14 (2): 12–16. https://www.chromatographyonline.com/view/vacuum-ultraviolet-spectroscopy-new-tool-gas-chromatography-analysis-terpenes-flavours-and-fragrance. 
  8. "Cannabis Testing Laboratory Solutions" (PDF). Shimadzu Corporation. Archived from the original on 27 March 2016. https://web.archive.org/web/20160327180816/https://www.ssi.shimadzu.com/products/literature/life_science/shimadzu_cannabis_brochure.pdf. Retrieved 05 August 2022. 
  9. CEM Corporation (25 July 2018). "Analyzing Pesticide Residue of Cannabis". AZO Materials. AZoNetwork. https://www.azom.com/article.aspx?ArticleID=16383. Retrieved 05 August 2022.