Template:Past, Present, and Future of Cannabis Laboratory Testing and Regulation in the United States/Laboratory testing of cannabis/Lab equipment

From LIMSWiki
Jump to navigationJump to search

3.5 Lab equipment

As indicated in previous sections, spectrometry and chromatography have played and will continue to play an important role in cannabis laboratory testing. This should not be surprising: "mass spectrometry is superior to other spectral techniques in such features as sensitivity, selectivity, generation possibility of molecular mass/formula, and combinability with chromatography."[1] Analyzing complex chemical compounds that have many features and which are at times difficult to differentiate from each other proves challenging, but these technologies excel in meeting that task.[1] Refer to the previous "Methods and guidelines" section to note the specific technology associated with each molecule and contaminant. Aside from spectrometry and chromatography equipment, the analysis of microorganisms in cannabis may turn to DNA analysis methods that require additional equipment such as a thermal cycler (qPCR) or sequencer (WMGS), or ELISA, which utilizes a photometer or spectrophotometer. Of course, preparing and storing samples requires equipment as well, such as microplates, centrifuges, comparison standards, capillaries, chemicals, columns, Petri dishes, scales, and disposable gloves. Software-based data management systems may also constitute equipment and are discussed in the next section.

When it comes to purchasing lab equipment specifically for cannabis testing, a 2015 interview with Emerald Scientific's CTO Amanda Rigdon (then with Restek Corporation) provides good advice[2]:

  • Industry-specific instrumentation isn't needed in most cases as most of the techniques and equipment used in food and herbal medicine testing have strong parallels to cannabis testing.
  • That said, some sample preparation tools, standards, and consumables specifically marketed to the industry may very well make the job quicker and more reliable.
  • Appropriate sample preparation techniques are just as vital as the equipment you use.
  • Do your research; many instrument companies are examining methodologies usable on conventional equipment, lessening the need for more expensive devices.
  • If buying used equipment, make sure the original manufacturer is still in business and producing consumables and replacement parts. Make sure your planned methods match the equipment, and make sure it's not so old that it can't be serviced by a qualified technician.

For more on specific laboratory equipment and vendors, see the next chapter in this guide.

  1. 1.0 1.1 Milman, B.L. (2010). "Chapter 2: Techniques and Methods of Identification". Chemical Identification and its Quality Assurance. Springer Berlin Heidelberg. pp. 23–39. doi:10.1007/978-3-642-15361-7_2. ISBN 9783642153617. 
  2. Taylor, M. (23 June 2015). "Cannabis Testing Opens Up a Whole New Market". Laboratory Equipment. Advantage Business Media. Archived from the original on 13 January 2017. https://web.archive.org/web/20170113025548/http://www.laboratoryequipment.com/article/2015/06/cannabis-testing-opens-whole-new-market. Retrieved 05 August 2022.