Difference between revisions of "User:Shawndouglas/sandbox/sublevel12"

From LIMSWiki
Jump to navigationJump to search
Line 48: Line 48:


==How a LIMS contributes to better addressing these principles==
==How a LIMS contributes to better addressing these principles==
Upon reviewing those seven principles of food and beverage quality and safety management, it's clear that they are largely enterprise-wide principles affecting the multiple departments and branches of the enterprise, including any in-house laboratory. Additionally, it's somewhat difficult to tie each principle to the laboratory-based activities of the industry. (This is particularly true of businesses that subcontract out laboratory work to a third-part. However, that food and beverage business will likely want to vet any third-party laboratory to ensure it's capable of operating in sympathy with the seven principles of quality and safety management). To be sure, a [[laboratory information management system]] (LIMS) is a laboratory-specific piece of software that, when purpose-built, can still have some broader enterprise applicability, yet it's not a "does everything" type of [[informatics]] solution.


Keeping in mind the intended function of a LIMS, as well as the diverse approaches to laboratory-based R&D and quality testing of food and beverages, there are undoubtedly ways that a LIMS can help a food and beverage laboratory—and the overall business that employs it—address the seven principles of food and beverage quality and safety management. One example of LIMS functionality that can help the lab and overall business better address all the principles is the LIMS' document management tools.
* '''Hygiene''':
* '''Risk management via HACCP''':
* '''Reliability''':
* '''Consistency''':
* '''Traceability''':
* '''Relevance''':
* '''Transparent and accountable integrity''':


==Conclusion==
==Conclusion==

Revision as of 21:37, 19 January 2024

Sandbox begins below

[[File:|right|450px]] Title: How does a LIMS help a food and beverage business better address the core principles of quality and safety management?

Author for citation: Shawn E. Douglas

License for content: Creative Commons Attribution-ShareAlike 4.0 International

Publication date: January 2024

Introduction

The core principles of food and beverage quality and safety management

Hazard analysis and critical control points (HACCP) methods remain one of the obvious go-to tools for food and beverage businesses.

In the 2023 book Food Safety Management: A Practical Guide for the Food Industry, Overbosch and Blanchard break down the concept of food and beverage quality and safety management into a set of principles that must be applied in order to best achieve it[1]:

  • Hygiene in the workplace,
  • Prevention and reduction of risks (through HACCP),
  • Reliability of processes and equipment,
  • Consistency of products and processes to their specifications,
  • Traceability of products and ingredients,
  • Relevance of products to the customer or consumer, and
  • Transparent and accountable integrity of products and ingredients.

For the purposes of food and beverage quality and safety management, hygiene management can be understood as the process of identifying and shrinking down the list of "realistic hazards" in development, production, and packaging into a manageable yet robust set of preventable and eliminable risks that either get addressed up-front (the easier risks) or individually identified and managed through HACCP (the more difficult risks).[1] Preventing illness, the introduction of foreign material, and the introduction of allergens are generally the domain of hygiene management, backed by standardized approaches found with, for example, ISO/TS 22002-1:2009 Prerequisite programmes on food safety - Part 1: Food manufacturing, EN 15593:2008 Packaging - Management of hygiene in the production of packaging for foodstuffs - Requirements, and Codex Alimentarius CXC 1-1968 General Principles of Food Hygiene.[1][2]

While addressing hygiene management is in part a matter of addressing a specific set of risks, more broadly food and beverage businesses must address a wide variety of other risks beyond hygiene. This is where HACCP fully comes into play. The U.S. Food and Drug Administration (FDA) describes HACCP as "a management system in which food safety is addressed through the analysis and control of biological, chemical, and physical hazards from raw material production, procurement and handling, to manufacturing, distribution and consumption of the finished product."[3] As the definition notes, this systems is meant to address a variety of risks from start to finish. However, standards like ISO 22000 that dictate certification to HACCP don't necessarily point to specific hazards; this is left up to the implementers of HACCP systems to do their due diligence and select the most appropriate hazards (i.e., having appropriate specificity and relevancy) and describe how they will be measured and enforced. (In other words, just because HACCP is in place doesn't mean it will be effective.)[1]

Processes and equipment must perform in a predictable manner, with attention paid to their regular review and maintenance. Deficiencies here can originate from lack of appropriate preventive maintenance, non-thorough process design that doesn't imagine "worst case scenarios," and insufficient controls to demonstrate processes and equipment are working as they should.[1] A lack of focuse on reliability can lead to inefficiencies, spoilage, and decreased production.[4] The focus on reliability can also tie into the prior principle of risk prevention and reduction, whereas risk and reliability modelling can go hand-in-hand. Proper modelling around a framework that identifies critical equipment with high failure rates and modifies maintenance plans to address those rates can in turn improve quality, safety, and availability.[5]

Product and process consistency—such that variation from the proper specification is limited—is also important to the food and beverage business. Of course, consistency borne from specification and adherence to it requires that the specification is relevant, specific, precise, and realistic to the intended product or process, while maintaining appropriate goals and symmetrical limits, as well as ensuring process capability. Without these considerations in place, consistent product and process control is unachievable.[1] When they are properly enacted in a careful and systematic way to reduce variability, waste reduction, higher quality, and increased customer satisfaction are real outcomes. Laboratories and quality control testing play an obvious role here.

Traceability is a vital principal, especially in the scope of regulatory compliance. From edible products derived from Cannabis constituents to bottled water, an approach to traceability that consider "where did it come from, where is it within our premises, and where did it go?" is required to better ensure public safety. Labels that state the region or country of origin involve traceability aspects, as do product recalls and withdraws. Again, laboratory testing that involves durable chain of custody plays an important role here, particularly in maintaining certified marks for characteristics like "organic" of "GMO-free."[1] The U.S. FDA's Food Safety Modernization Act places additional record-keeping demands on food and beverage businesses[6], making the principle of traceability practically unavoidable.

When discussing the principle of "relevance," the adage of "listen to your customer" comes to mind. In the scope of R&D, this represents the intended audience, from which surveys, panels, and laboratory techniques work towards developing a product that the intended customer has multi-faceted interest in consuming. In the scope of already released product, customer feedback in the form of satisfaction surveys and directed complaint (and compliment) collection systems are used (though failure rates and relative indifference to shortcomings can't necessarily be effectively gleaned from such tools).[1] Inevitably, whether a new product or current one, staying in touch with consumer expectations (which increasingly see consumers looking for safer foods with recognizable traceability statements, certification marks, and laboratory-based certificates of analysis)[7] is a strong aspect of the principle of relevance.

Finally, customers and consumers demand quality from food and beverage products and their ingredients, and transparent and accountable integrity begets quality.[8] In the scope offood and beverage development and production, Overbosch and Blanchard says that this focus on transparent and accountable integrity "means that an acceptable level of transparency must be provided about all relevant parameters and conditions, related to the [other] principles mentioned above, batch by batch."[1] This level of transparency is also linked to traceability; traceability systems will fail without the appropriate level of transparency. The deeply proprietary nature of some processes and such may seemingly get in the way of transparency, and as a result a direct-to-the-source approach may emerge, giving the organization less complexity and a clearer route to accountability to its customers.[1]

How a LIMS contributes to better addressing these principles

Upon reviewing those seven principles of food and beverage quality and safety management, it's clear that they are largely enterprise-wide principles affecting the multiple departments and branches of the enterprise, including any in-house laboratory. Additionally, it's somewhat difficult to tie each principle to the laboratory-based activities of the industry. (This is particularly true of businesses that subcontract out laboratory work to a third-part. However, that food and beverage business will likely want to vet any third-party laboratory to ensure it's capable of operating in sympathy with the seven principles of quality and safety management). To be sure, a laboratory information management system (LIMS) is a laboratory-specific piece of software that, when purpose-built, can still have some broader enterprise applicability, yet it's not a "does everything" type of informatics solution.

Keeping in mind the intended function of a LIMS, as well as the diverse approaches to laboratory-based R&D and quality testing of food and beverages, there are undoubtedly ways that a LIMS can help a food and beverage laboratory—and the overall business that employs it—address the seven principles of food and beverage quality and safety management. One example of LIMS functionality that can help the lab and overall business better address all the principles is the LIMS' document management tools.

  • Hygiene:
  • Risk management via HACCP:
  • Reliability:
  • Consistency:
  • Traceability:
  • Relevance:
  • Transparent and accountable integrity:

Conclusion

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Overbosch, P.; Blanchard, S. (2023). "Principles and Systems for Quality and Food Safety Management". In Andersen, V.; Lelieveld, H.; Motarjemi, Y.. Food Safety Management: A Practical Guide for the Food Industry (2nd ed.). Elsevier, Inc. pp. 497–512. ISBN 9780128200131. https://books.google.com/books?id=3TpwEAAAQBAJ&printsec=frontcover. 
  2. Ariosti, A. (2016). "Chapter 11: Managing Contamination Risks from Packaging Materials". In Lelieveld, Huub; Holah, John; Gabrić, Domagoj. Handbook of hygiene control in the food industry. Woodhead Publishing in food science, technology and nutrition (Second edition ed.). Amsterdam: Woodhead Publishing is an imprint of Elsevier. pp. 147–177. ISBN 978-0-08-100155-4. OCLC 959892242. https://www.worldcat.org/title/mediawiki/oclc/959892242. 
  3. "Hazard Analysis Critical Control Point (HACCP)". U.S. Food and Drug Administration. 25 February 2022. https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/hazard-analysis-critical-control-point-haccp. Retrieved 19 January 2024. 
  4. Tsarouhas, Panagiotis (1 November 2012). "Reliability, availability and maintainability analysis in food production lines: a review" (in en). International Journal of Food Science & Technology 47 (11): 2243–2251. doi:10.1111/j.1365-2621.2012.03073.x. ISSN 0950-5423. https://ifst.onlinelibrary.wiley.com/doi/10.1111/j.1365-2621.2012.03073.x. 
  5. Soltanali, Hamzeh; Khojastehpour, Mehdi; Torres Farinha, José (4 March 2023). "An improved risk and reliability framework-based maintenance planning for food processing systems" (in en). Quality Technology & Quantitative Management 20 (2): 256–278. doi:10.1080/16843703.2022.2093565. ISSN 1684-3703. https://www.tandfonline.com/doi/full/10.1080/16843703.2022.2093565. 
  6. "Tracking and Tracing of Food". U.S. Food and Drug Administration. 15 November 2022. https://www.fda.gov/food/new-era-smarter-food-safety/tracking-and-tracing-food. Retrieved 19 January 2024. 
  7. Lin, Paohui; Tsai, Hsientang; Ho, Tzuya (31 August 2020). "Food Safety Gaps between Consumers’ Expectations and Perceptions: Development and Verification of a Gap-Assessment Tool" (in en). International Journal of Environmental Research and Public Health 17 (17): 6328. doi:10.3390/ijerph17176328. ISSN 1660-4601. PMC PMC7503573. PMID 32878088. https://www.mdpi.com/1660-4601/17/17/6328. 
  8. Weiner, Edith; Brown, Arnold (2006). "Chapter 8: Integrity Begets Quality". Future think: How to think clearly in a time of change. Upper Saddle River, NJ: Pearson Prentice Hall. pp. 105–16. ISBN 978-0-13-185674-5. https://www.oreilly.com/library/view/future-think-how/013185674X/.