Difference between revisions of "User:Shawndouglas/sandbox/sublevel1"

From LIMSWiki
Jump to navigationJump to search
Line 1: Line 1:
Cytogenetics is a subcategory of genetics that specifically studies chromosomes and their structures. "Trained cytogeneticists examine the number, shape, and staining pattern of these structures using special technologies. In this way, they can detect extra chromosomes, missing chromosomes, missing or extra pieces of chromosomes, or rearranged chromosomes."<ref name="AACCGenetic19" /> Some diseases occur as the result of these chromosomal anomalies; for example, amplification of a particular gene in breast cancer or translocation of part of a chromosome in chronic myelogenous leukemia may be spotted with cytogenetic techniques.<ref name="AACCGenetic19">{{cite web |url=https://www.testing.com/genetic-testing-techniques/ |title=Genetic Testing Techniques |work=Testing.com |publisher=OneCare Media |date=09 November 2021 |accessdate=18 November 2021}}</ref>
While the research, analysis, and processing of cannabis has been ongoing for centuries<ref name="DeitchHemp03">{{cite book |title=Hemp – American History Revisited |author=Deitch, R. |publisher=Algora Publishing |location=New York City |year=2003 |pages=232 |isbn=9780875862262}}</ref>, it wasn't until 1896 that Wood ''et al.'' conducted one of the first documented chemical experiments to determine the constituents of cannabis. Several years later, the researchers were able to correctly identify the extracted and isolated cannabinol from the exuded resin of Indian hemp as C<sub>21</sub>H<sub>26</sub>O<sub>2</sub>.<ref name="WoodCann1899">{{cite journal |title=III.—Cannabinol. Part I |journal=Journal of the Chemical Society, Transactions |author=Wood, T.B.; Newton Spivey, W.T.; Easterfield, T.H. |volume=75 |pages=30–36 |year=1899 |doi=10.1039/CT8997500020}}</ref> As of mid-2018, somewhere between 104 upwards to more than 140 of the more than 750 constituents of ''Cannabis sativa'' have been identified as cannabinoids<ref name="RadwanIso15">{{cite journal |title=Isolation and pharmacological evaluation of minor cannabinoids from high-potency ''Cannabis sativa'' |journal=Journal of Natural Products |author=Radwan, M.M.; ElSohly, M.A.; El-Alfy, A.T. et al. |volume=78 |issue=6 |pages=1271-6 |year=2015 |doi=10.1021/acs.jnatprod.5b00065 |pmid=26000707 |pmc=PMC4880513}}</ref><ref name="SolymosiCanna17">{{cite journal |title=''Cannabis'': A Treasure Trove or Pandora's Box? |journal=Mini-Reviews in Medicinal Chemistry |author=Solymosi, K.; Köfalvi, A. |volume=17 |pages=1123–91 |year=2017 |doi=10.2174/1389557516666161004162133}}</ref><ref name="MudgeChemo18">{{cite journal |title=Chemometric Analysis of Cannabinoids: Chemotaxonomy and Domestication Syndrome |journal=Scientific Reports |author=Mudge, E.M.; Murch, S.J.; Brown, P.N. |volume=8 |at=13090 |year=2018 |doi=10.1038/s41598-018-31120-2}}</ref>, "a class of diverse chemical compounds that act on cannabinoid receptors in cells that modulate neurotransmitter release in the brain."<ref name="WHOTheHealth16">{{cite book |url=https://www.who.int/publications/i/item/9789241510240 |title=The health and social effects of nonmedical cannabis use |author=World Health Organization |editor=Hall, W.; Renström, M.; Poznyak, V |publisher=World Health Organization |pages=95 |year=2016 |isbn=978921510240}}</ref>


The cytogenetics laboratory depends on several analytical techniques to make these sorts of genetic discoveries in a patient. Methods include chromosome analysis or karyotyping, fluorescence ''in situ'' hybridization (FISH), and microarray-based assays such as comparative genomic hybridization.<ref name="AACCGenetic19" /><ref name="MayoClinicCyto">{{cite web |url=https://www.mayoclinic.org/departments-centers/laboratory-medicine-pathology/overview/specialty-groups/laboratory-genetics/cytogenetics-laboratory |title=Cytogenetics Laboratory |work=Departments and Centers: Laboratory Medicine and Pathology |publisher=Mayo Clinic |accessdate=18 November 2021}}</ref><ref name="YaleCyto">{{cite web |url=https://medicine.yale.edu/lab/cytogenetics/testing/ |title=Cytogenetics Lab Tests |work=Cytogenetics Lab |publisher=Yale School of Medicine |accessdate=18 November 2021}}</ref> Karyotyping involves the separation of whole chromosomes from the nuclei of cells that have been stained with special dyes, cutting and arranging the resulting imagery of those chromosomes, and examining the results. FISH uses special "probes" that fluoresce gene segments of chromosomes. The position and number of the fluoresced gene segments is then analyzed for abnormalities.<ref name="AACCGenetic19" /> And the comparative genomic hybridization assay uses a complicated process of using a "competitive" form of FISH that compares two DNA sources, which are denatured so they are single-stranded, and hybridizes the two samples in a 1:1 ratio to a normal metaphase spread of chromosomes.<ref name="WeissComp99">{{cite journal |title=Comparative genomic hybridization |journal=Molecular Pathology |author=Weiss, M.M.; Hermsen, M.A.; Meijer, G.A. et al. |volume=52 |issue=5 |pages=243–51 |year=1999 |doi=10.1136/mp.52.5.243 |pmid=10748872 |pmc=PMC395705}}</ref>
However, at least in the United States, when it comes to 1. enacting the broad level of testing required to ensure public safety—whether it be medical, recreational, or industrial use of cannabis—and 2. researching and better understanding the pharmacokinetics and pharmacodynamics (medical use and benefit) of cannabinoids in the human population, many have argued that laboratory testing of cannabis is still in its infancy<ref name="HazekampCanna12">{{cite journal |title=Cannabis - from cultivar to chemovar |journal=Drug Testing and Analysis |author=Hazekamp, A.; Fischedick, J.T. |volume=4 |issue=7–8 |pages=660–7 |year=2012 |doi=10.1002/dta.407 |pmid=22362625}}</ref><ref name="BushWorlds15">{{cite web |url=https://www.seattletimes.com/seattle-news/worldrsquos-strongest-weed-potency-testing-challenged/ |title=World’s strongest weed? Potency testing challenged |author=Bush, E. |work=The Seattle Times |publisher=The Seattle Times Company |date=18 February 2015 |accessdate=18 November 2021}}</ref><ref name="RutschQuality15">{{cite web |url=https://www.npr.org/sections/health-shots/2015/03/24/395065699/quality-testing-legal-marijuana-strong-but-not-always-clean |title=Quality-Testing Legal Marijuana: Strong But Not Always Clean |author=Rutsch, P. |work=Shots |publisher=National Public Radio |date=24 March 2015 |accessdate=18 November 2021}}</ref><ref name="KuzdzalUnrav15">{{cite journal |title=Unraveling the Cannabinome |journal=The Analytical Scientist |author=Kuzdzal, S.; Lipps, W. |issue=0915 |year=2015 |url=https://theanalyticalscientist.com/techniques-tools/unraveling-the-cannabinome |accessdate=18 November 2021}}</ref><ref name="CrombieMari16">{{cite web |url=https://www.oregonlive.com/marijuana/2016/07/marijuana_labs_prepping_for_st.html |title=Marijuana labs prepping for regulation and oversight; no lab licenses issued yet |author=Crombie, N. |work=The Oregonian |publisher=Oregon Live LLC |date=25 July 2016 |accessdate=18 November 2021}}</ref><ref name="KuzdzalACloser16">{{cite web |url=https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Industry/Literature/Shimadzu_Whitepaper_Emerging_Cannabis_Industry.pdf |format=PDF |title=A Closer Look at Cannabis Testing |author=Kuzdzal, S.; Clifford, R.; Winkler, P.; Bankert, W. |publisher=Shimadzu Corporation |date=December 2017 |accessdate=18 November 2021}}</ref> and evidence-based research of marijuana continues to be slow and bogged down in regulation.<ref name="BajajHowThe14">{{cite web |url=https://takingnote.blogs.nytimes.com/2014/07/30/how-the-federal-government-slows-marijuana-research/ |title=How the Federal Government Slows Marijuana Research |author=Bajaj, V. |work=Taking Note: The New York Times |publisher=The New York Times Company |date=30 July 2014 |accessdate=18 November 2021}}</ref><ref name="CheslerGov15">{{cite web |url=https://weedrush.news21.com/government-restrictions-lack-of-funding-slow-progress-on-medical-marijuana-research/ |title=Government restrictions, lack of funding slow progress on medical marijuana research |author=Chesler, J.; Ard, A. |work=News21: America's Weed Rush |publisher=Carnegie Corporation of New York; John S. and James L. Knight Foundation |date=15 August 2015 |accessdate=18 November 2021}}</ref><ref name="WeissTestimony16">{{cite web |url=https://www.hhs.gov/about/agencies/asl/testimony/2016-09/the-state-of-the-science-on-the-therapeutic-potential-of-marijuana-and-cannabinoids/index.html |archiveurl=https://web.archive.org/web/20170504180135/https://www.hhs.gov/about/agencies/asl/testimony/2016-09/the-state-of-the-science-on-the-therapeutic-potential-of-marijuana-and-cannabinoids/index.html |title=Testimony from Susan R.B. Weiss, Ph.D. on The State of the Science on the Therapeutic Potential of Marijuana and Cannabinoids before Judiciary Committee |author=Weiss, S.R.B. |work=ASL Testimony |publisher=U.S. Department of Health & Human Services |date=13 July 2016 |archivedate=04 May 2017 |accessdate=18 November 2021}}</ref><ref name="JosephDEA16">{{cite web |url=https://www.statnews.com/2016/08/10/marijuana-medical-research-dea/ |title=DEA decision keeps major restrictions in place on marijuana research |author=Joseph, A. |work=STAT |publisher=Boston Globe Media |date=10 August 2016 |accessdate=18 November 2021}}</ref><ref name="RudroffMari17">{{cite web |url=https://www.newsweek.com/marijuana-regulation-blocks-vital-ms-research-544886 |title=Marijuana Regulation Blocks Vital Multiple Sclerosis Research |author=Rudroff, T. |work=Newsweek |publisher=IBT Media, Inc |date=21 January 2017 |accessdate=18 November 2021}}</ref> As such, legally researching and analyzing the chemical constituents of cannabis is a complicated task, with much more work to be done.


Like a normal medical diagnostic laboratory, the cytogenetics laboratory must follow a set of good practices, many of which are similar to the medical diagnostic lab. However, additional considerations to good practice specific to the cytogenetics laboratory are typically required, particularly in being assessed for accreditation. In Australia, for example, the National Pathology Accreditation Advisory Council (NPAAC) makes recommendations on the accreditation of laboratories providing cytogenetic services.<ref name="NPAACRequire13">{{cite book |url=https://www1.health.gov.au/internet/main/publishing.nsf/Content/76FFC342EA4F4CCBCA257BF0001D7A2A/$File/V0.22%20Cytogenetics.pdf |format=PDF |title=Requirements for Cytogenetic Testing, Third Edition |author=National Pathology Accreditation Advisory Council |publisher=Commonwealth of Australia |edition=3rd |year=2013 |isbn=9781742419572 |accessdate=18 November 2021}}</ref> The College of American Pathologists (CAP) does something similar with its Cytogenetics Checklist for its CAP Accreditation Program.<ref name="CAPCyto17">{{cite web |url=https://elss.cap.org/elss/ShowProperty?nodePath=/UCMCON/Contribution%20Folders/DctmContent/education/OnlineCourseContent/2017/LAP-TLTM/checklists/cl-cyg.pdf |format=PDF |title=Cytogenetics Checklist |author=College of American Pathologists |date=21 August 2017 |accessdate=18 November 2021}}</ref>
Regulation and method standardization woes aside, cannabis is also difficult to analyze due to its matrix, and the task becomes even more difficult when it's added to food and other matrix types, requiring established and consistent methods for testing.<ref name="DePalmaChallenges18">{{cite web |url=https://www.labmanager.com/insights/challenges-of-cannabis-contaminant-testing-1928 |title=Challenges of Cannabis Contaminant Testing |author=DePalma, A. |work=Lab Manager |publisher=LabX Media Group |date=10 September 2018 |accessdate=18 November 2021}}</ref><ref name="CummingsGurus18">{{cite |journal |title=Gurus of Pesticide Residue Analysis [The Cannabis Scientist] |journal=The Analytical Scientist |author=Cummings, J. |publisher=Texere Logo Texere Publishing Ltd |issue=0218 |year=2018 |url=https://theanalyticalscientist.com/fileadmin/tas/pdf-versions/TCS_Issue4.pdf |format=PDF}}</ref> Regulators, patients, and the testing industry are all calling for improved standardization of both the production and testing of medical and recreational cannabis. Without proper testing, several issues are bound to arise<ref name="BushWorlds15" /><ref name="RutschQuality15" /><ref name="HazekampCanna12">{{cite journal |title=Cannabis - from cultivar to chemovar |journal=Drug Testing and Analysis |author=Hazekamp, A.; Fischedick, J.T. |volume=4 |issue=7–8 |pages=660–7 |year=2012 |doi=10.1002/dta.407 |pmid=22362625}}</ref><ref name="KuzdzalACloser17">{{cite web |url=https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Industry/Literature/Shimadzu_Whitepaper_Emerging_Cannabis_Industry.pdf |format=PDF |title=A Closer Look at Cannabis Testing |author=Kuzdzal, S.; Clifford, R.; Winkler, P.; Bankert, W. |publisher=Shimadzu Corporation |date=December 2017 |accessdate=18 November 2020}}</ref><ref name="CassidayTheHighs16">{{cite web |url=https://www.aocs.org/stay-informed/inform-magazine/featured-articles/the-highs-and-lows-of-cannabis-testing-october-2016 |title=The Highs and Lows of Cannabis Testing |author=Cassiday, L. |work=INFORM |publisher=American Oil Chemists' Society |date=October 2016 |accessdate=18 November 2021}}</ref><ref name="CANORMLHow11">{{cite web |url=https://www.canorml.org/business-resources-for-cannabis-brands/how-accurate-is-cannabis-potency-testing/ |title=How Accurate Is Cannabis Potency Testing? |publisher=California NORML |date=21 September 2011 |accessdate=18 November 2021}}</ref>:
 
* label claims may not match actual contents;
* contaminants may linger, causing illness or even death;
* chemical properties and medicinal benefits of specific strains and their unique cannabinoid-terpene profiles can't be isolated; and
* research on potential therapeutic qualities can't be replicated, hindering scientific progress.
 
Cannabis testing labs are increasingly common in regions and countries where legalization efforts have reached fruition. In particular, the labs analyzing medical cannabis are vitally important for ensuring the best outcomes of patient health. These labs are responsible for analyzing many of the constituents of cannabis, including cannabinoids, terpenes, and contaminates (e.g., pesticides, solvents, heavy metals, mycotoxins, and microorganisms). The test equipment and methods used for these analyses continue to develop and evolve. Testing for cannabinoids may involve [[chromatography]] methods such as [[high-performance liquid chromatography]] with UV detection (HPLC-UV) or [[supercritical fluid chromatography]] (SFC)<ref name="CassidayTheHighs16" /><ref name="APHLGuide16">{{cite web |url=https://www.aphl.org/aboutAPHL/publications/Documents/EH-Guide-State-Med-Cannabis-052016.pdf |format=PDF |title=Guidance for State Medical Cannabis Testing Programs |author=Association of Public Health Laboratories |pages=35 |date=May 2016 |accessdate=18 November 2021}}</ref>, while terpene analysis requires various forms of specialized [[gas chromatography]].<ref name="CassidayTheHighs16" /><ref name="ShimadzuCLTS">{{cite web |url=https://www.ssi.shimadzu.com/products/literature/life_science/shimadzu_cannabis_brochure.pdf |archiveurl=https://web.archive.org/web/20160327180816/https://www.ssi.shimadzu.com/products/literature/life_science/shimadzu_cannabis_brochure.pdf |format=PDF |title=Cannabis Testing Laboratory Solutions |publisher=Shimadzu Corporation |archivedate=27 March 2016 |accessdate=18 November 2021}}</ref> And heavy metal analysis typically involves some sort of [[inductively coupled plasma mass spectrometry]].<ref name="CassidayTheHighs16" /><ref name="APHLGuide16" /><ref name="ShimadzuCLTS" />


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}

Revision as of 23:28, 21 January 2022

While the research, analysis, and processing of cannabis has been ongoing for centuries[1], it wasn't until 1896 that Wood et al. conducted one of the first documented chemical experiments to determine the constituents of cannabis. Several years later, the researchers were able to correctly identify the extracted and isolated cannabinol from the exuded resin of Indian hemp as C21H26O2.[2] As of mid-2018, somewhere between 104 upwards to more than 140 of the more than 750 constituents of Cannabis sativa have been identified as cannabinoids[3][4][5], "a class of diverse chemical compounds that act on cannabinoid receptors in cells that modulate neurotransmitter release in the brain."[6]

However, at least in the United States, when it comes to 1. enacting the broad level of testing required to ensure public safety—whether it be medical, recreational, or industrial use of cannabis—and 2. researching and better understanding the pharmacokinetics and pharmacodynamics (medical use and benefit) of cannabinoids in the human population, many have argued that laboratory testing of cannabis is still in its infancy[7][8][9][10][11][12] and evidence-based research of marijuana continues to be slow and bogged down in regulation.[13][14][15][16][17] As such, legally researching and analyzing the chemical constituents of cannabis is a complicated task, with much more work to be done.

Regulation and method standardization woes aside, cannabis is also difficult to analyze due to its matrix, and the task becomes even more difficult when it's added to food and other matrix types, requiring established and consistent methods for testing.[18][19] Regulators, patients, and the testing industry are all calling for improved standardization of both the production and testing of medical and recreational cannabis. Without proper testing, several issues are bound to arise[8][9][7][20][21][22]:

  • label claims may not match actual contents;
  • contaminants may linger, causing illness or even death;
  • chemical properties and medicinal benefits of specific strains and their unique cannabinoid-terpene profiles can't be isolated; and
  • research on potential therapeutic qualities can't be replicated, hindering scientific progress.

Cannabis testing labs are increasingly common in regions and countries where legalization efforts have reached fruition. In particular, the labs analyzing medical cannabis are vitally important for ensuring the best outcomes of patient health. These labs are responsible for analyzing many of the constituents of cannabis, including cannabinoids, terpenes, and contaminates (e.g., pesticides, solvents, heavy metals, mycotoxins, and microorganisms). The test equipment and methods used for these analyses continue to develop and evolve. Testing for cannabinoids may involve chromatography methods such as high-performance liquid chromatography with UV detection (HPLC-UV) or supercritical fluid chromatography (SFC)[21][23], while terpene analysis requires various forms of specialized gas chromatography.[21][24] And heavy metal analysis typically involves some sort of inductively coupled plasma mass spectrometry.[21][23][24]

References

  1. Deitch, R. (2003). Hemp – American History Revisited. New York City: Algora Publishing. pp. 232. ISBN 9780875862262. 
  2. Wood, T.B.; Newton Spivey, W.T.; Easterfield, T.H. (1899). "III.—Cannabinol. Part I". Journal of the Chemical Society, Transactions 75: 30–36. doi:10.1039/CT8997500020. 
  3. Radwan, M.M.; ElSohly, M.A.; El-Alfy, A.T. et al. (2015). "Isolation and pharmacological evaluation of minor cannabinoids from high-potency Cannabis sativa". Journal of Natural Products 78 (6): 1271-6. doi:10.1021/acs.jnatprod.5b00065. PMC PMC4880513. PMID 26000707. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880513. 
  4. Solymosi, K.; Köfalvi, A. (2017). "Cannabis: A Treasure Trove or Pandora's Box?". Mini-Reviews in Medicinal Chemistry 17: 1123–91. doi:10.2174/1389557516666161004162133. 
  5. Mudge, E.M.; Murch, S.J.; Brown, P.N. (2018). "Chemometric Analysis of Cannabinoids: Chemotaxonomy and Domestication Syndrome". Scientific Reports 8: 13090. doi:10.1038/s41598-018-31120-2. 
  6. World Health Organization (2016). Hall, W.; Renström, M.; Poznyak, V. ed. The health and social effects of nonmedical cannabis use. World Health Organization. pp. 95. ISBN 978921510240. https://www.who.int/publications/i/item/9789241510240. 
  7. 7.0 7.1 Hazekamp, A.; Fischedick, J.T. (2012). "Cannabis - from cultivar to chemovar". Drug Testing and Analysis 4 (7–8): 660–7. doi:10.1002/dta.407. PMID 22362625. 
  8. 8.0 8.1 Bush, E. (18 February 2015). "World’s strongest weed? Potency testing challenged". The Seattle Times. The Seattle Times Company. https://www.seattletimes.com/seattle-news/worldrsquos-strongest-weed-potency-testing-challenged/. Retrieved 18 November 2021. 
  9. 9.0 9.1 Rutsch, P. (24 March 2015). "Quality-Testing Legal Marijuana: Strong But Not Always Clean". Shots. National Public Radio. https://www.npr.org/sections/health-shots/2015/03/24/395065699/quality-testing-legal-marijuana-strong-but-not-always-clean. Retrieved 18 November 2021. 
  10. Kuzdzal, S.; Lipps, W. (2015). "Unraveling the Cannabinome". The Analytical Scientist (0915). https://theanalyticalscientist.com/techniques-tools/unraveling-the-cannabinome. Retrieved 18 November 2021. 
  11. Crombie, N. (25 July 2016). "Marijuana labs prepping for regulation and oversight; no lab licenses issued yet". The Oregonian. Oregon Live LLC. https://www.oregonlive.com/marijuana/2016/07/marijuana_labs_prepping_for_st.html. Retrieved 18 November 2021. 
  12. Kuzdzal, S.; Clifford, R.; Winkler, P.; Bankert, W. (December 2017). "A Closer Look at Cannabis Testing" (PDF). Shimadzu Corporation. https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Industry/Literature/Shimadzu_Whitepaper_Emerging_Cannabis_Industry.pdf. Retrieved 18 November 2021. 
  13. Bajaj, V. (30 July 2014). "How the Federal Government Slows Marijuana Research". Taking Note: The New York Times. The New York Times Company. https://takingnote.blogs.nytimes.com/2014/07/30/how-the-federal-government-slows-marijuana-research/. Retrieved 18 November 2021. 
  14. Chesler, J.; Ard, A. (15 August 2015). "Government restrictions, lack of funding slow progress on medical marijuana research". News21: America's Weed Rush. Carnegie Corporation of New York; John S. and James L. Knight Foundation. https://weedrush.news21.com/government-restrictions-lack-of-funding-slow-progress-on-medical-marijuana-research/. Retrieved 18 November 2021. 
  15. Weiss, S.R.B. (13 July 2016). "Testimony from Susan R.B. Weiss, Ph.D. on The State of the Science on the Therapeutic Potential of Marijuana and Cannabinoids before Judiciary Committee". ASL Testimony. U.S. Department of Health & Human Services. Archived from the original on 04 May 2017. https://web.archive.org/web/20170504180135/https://www.hhs.gov/about/agencies/asl/testimony/2016-09/the-state-of-the-science-on-the-therapeutic-potential-of-marijuana-and-cannabinoids/index.html. Retrieved 18 November 2021. 
  16. Joseph, A. (10 August 2016). "DEA decision keeps major restrictions in place on marijuana research". STAT. Boston Globe Media. https://www.statnews.com/2016/08/10/marijuana-medical-research-dea/. Retrieved 18 November 2021. 
  17. Rudroff, T. (21 January 2017). "Marijuana Regulation Blocks Vital Multiple Sclerosis Research". Newsweek. IBT Media, Inc. https://www.newsweek.com/marijuana-regulation-blocks-vital-ms-research-544886. Retrieved 18 November 2021. 
  18. DePalma, A. (10 September 2018). "Challenges of Cannabis Contaminant Testing". Lab Manager. LabX Media Group. https://www.labmanager.com/insights/challenges-of-cannabis-contaminant-testing-1928. Retrieved 18 November 2021. 
  19. Cummings, J., "Gurus of Pesticide Residue Analysis [The Cannabis Scientist"] (PDF), The Analytical Scientist (Texere Logo Texere Publishing Ltd) (0218), https://theanalyticalscientist.com/fileadmin/tas/pdf-versions/TCS_Issue4.pdf 
  20. Kuzdzal, S.; Clifford, R.; Winkler, P.; Bankert, W. (December 2017). "A Closer Look at Cannabis Testing" (PDF). Shimadzu Corporation. https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Industry/Literature/Shimadzu_Whitepaper_Emerging_Cannabis_Industry.pdf. Retrieved 18 November 2020. 
  21. 21.0 21.1 21.2 21.3 Cassiday, L. (October 2016). "The Highs and Lows of Cannabis Testing". INFORM. American Oil Chemists' Society. https://www.aocs.org/stay-informed/inform-magazine/featured-articles/the-highs-and-lows-of-cannabis-testing-october-2016. Retrieved 18 November 2021. 
  22. "How Accurate Is Cannabis Potency Testing?". California NORML. 21 September 2011. https://www.canorml.org/business-resources-for-cannabis-brands/how-accurate-is-cannabis-potency-testing/. Retrieved 18 November 2021. 
  23. 23.0 23.1 Association of Public Health Laboratories (May 2016). "Guidance for State Medical Cannabis Testing Programs" (PDF). pp. 35. https://www.aphl.org/aboutAPHL/publications/Documents/EH-Guide-State-Med-Cannabis-052016.pdf. Retrieved 18 November 2021. 
  24. 24.0 24.1 "Cannabis Testing Laboratory Solutions" (PDF). Shimadzu Corporation. Archived from the original on 27 March 2016. https://web.archive.org/web/20160327180816/https://www.ssi.shimadzu.com/products/literature/life_science/shimadzu_cannabis_brochure.pdf. Retrieved 18 November 2021.