Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
m (Wording)
(Updated article of the week text)
 
(421 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:DSS-Figure-1.PNG|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Bispo-Silva Geosciences23 13-11.png|240px]]</div>
A '''[[clinical decision support system]]''' ('''CDSS''') is a "computer [system] designed to impact clinician decision making about individual patients at the point in time these decisions are made." As such, it can be viewed as a knowledge management tool used to further clinical advice for patient care based on multiple items of patient data. In the early days, CDSSs were conceived of as being used to literally make decisions for the clinician. The clinician would input the information and wait for the CDSS to output the "right" choice, and the clinician would simply act on that output. However, the modern methodology involves the clinician interacting with the CDSS at the point of care, utilizing both their own knowledge and the CDSS to produce the best diagnosis from the test data. Typically, a CDSS suggests avenues for the physician to explore, and the physician is expected to use their own knowledge and judgement to narrow down possibilities.
'''"[[Journal:Geochemical biodegraded oil classification using a machine learning approach|Geochemical biodegraded oil classification using a machine learning approach]]"'''


CDSSs can be roughly divided into two types: those with knowledge bases and those without. The knowledge-based approach typically covers the diagnosis of many different diseases, while the non-knowledge-based approach often focuses on a narrow list of symptoms, such as symptoms for a single disease. ('''[[Clinical decision support system|Full article...]]''')<br />
[[Chromatography|Chromatographic]] oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of [[convolutional neural network]]s (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one (221) chromatographic oil images from different worldwide basins (Brazil, USA, Portugal, Angola, and Venezuela) were used. The [[open-source software]] Orange Data Mining was used to process images by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through convolutional operations ... ('''[[Journal:Geochemical biodegraded oil classification using a machine learning approach|Full article...]]''')<br />
 
''Recently featured'':
<br />
{{flowlist |
''Recently featured'': [[Medical practice management system]], [[Biodiversity informatics]], [[American Society of Crime Laboratory Directors/Laboratory Accreditation Board]]
* [[Journal:Knowledge of internal quality control for laboratory tests among laboratory personnel working in a biochemistry department of a tertiary care center: A descriptive cross-sectional study|Knowledge of internal quality control for laboratory tests among laboratory personnel working in a biochemistry department of a tertiary care center: A descriptive cross-sectional study]]
* [[Journal:Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study|Sigma metrics as a valuable tool for effective analytical performance and quality control planning in the clinical laboratory: A retrospective study]]
* [[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems]]
}}

Latest revision as of 13:37, 13 May 2024

Fig1 Bispo-Silva Geosciences23 13-11.png

"Geochemical biodegraded oil classification using a machine learning approach"

Chromatographic oil analysis is an important step for the identification of biodegraded petroleum via peak visualization and interpretation of phenomena that explain the oil geochemistry. However, analyses of chromatogram components by geochemists are comparative, visual, and consequently slow. This article aims to improve the chromatogram analysis process performed during geochemical interpretation by proposing the use of convolutional neural networks (CNN), which are deep learning techniques widely used by big tech companies. Two hundred and twenty-one (221) chromatographic oil images from different worldwide basins (Brazil, USA, Portugal, Angola, and Venezuela) were used. The open-source software Orange Data Mining was used to process images by CNN. The CNN algorithm extracts, pixel by pixel, recurring features from the images through convolutional operations ... (Full article...)
Recently featured: