Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
m (Lowercase link)
(Updated article of the week text)
(475 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Johannes Cordua Arzt in seinem Studierzimmer.jpg|160px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Tomich Sustain23 15-8.png|260px]]</div>
A '''[[physician office laboratory]]''' ('''POL''') is a physician-, partnership-, or group-maintained [[laboratory]] that performs diagnostic tests or examines specimens in order to diagnose, prevent, and/or treat a disease or impairment in a patient as part of the physician practice. The POL shows up in primary care physician offices as well as the offices of specialists like urologists, hematologists, gynecologists, and endocrinologists. In many countries like the United States, the physician office laboratory is considered a [[clinical laboratory]] and is thus regulated by federal, state, and/or local laws affecting such laboratories.
'''"[[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems]]"'''


The workflow of a POL is similar to other clinical labs; the difference in workflows mostly comes down to the time spent in transporting the specimen to an outside lab and waiting for the processing. The in-office lab saves time in those parts of the process. Potential benefits of a POL include quicker access to test results for the clinician, greater efficiency of the clinical workflow, cheaper testing, and greater patient comfort and happiness. Potential disadvantages include the physician office being the only point-of-access, patients not feeling comfortable about the physician's office being the central repository of information, and the cost of meeting compliance requirements for local, state, and federal regulations. ('''[[Physician office laboratory|Full article...]]''')<br />
Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the [[COVID-19]] [[pandemic]]. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems ... ('''[[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'': [[United States Department of Health and Human Services]], [[Bioimage informatics]], [[Biobank]]
{{flowlist |
* [[Journal:Data management challenges for artificial intelligence in plant and agricultural research|Data management challenges for artificial intelligence in plant and agricultural research]]
* [[Journal:A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model|A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model]]
* [[Journal:Effect of good clinical laboratory practices (GCLP) quality training on knowledge, attitude, and practice among laboratory professionals: Quasi-experimental study|Effect of good clinical laboratory practices (GCLP) quality training on knowledge, attitude, and practice among laboratory professionals: Quasi-experimental study]]
}}

Revision as of 17:11, 22 April 2024

Fig1 Tomich Sustain23 15-8.png

"Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems"

Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the COVID-19 pandemic. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems ... (Full article...)
Recently featured: