Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week.)
(Updated article of the week text)
(478 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Keck Bioimaging Lab.jpg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Tomich Sustain23 15-8.png|260px]]</div>
'''[[Bioimage informatics]]''' is a multidisciplinary sub-field of [[bioinformatics]] and computational biology that involves the development and use of computational techniques to analyze bioimages, especially cellular and molecular images, on a large scale fashion, with the goal of mining useful knowledge out of complicated and heterogeneous images and related metadata.
'''"[[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems]]"'''


The field of bioimage informatics is somewhat related to [[Imaging informatics|medical imaging informatics]], in so much as some of the advances in that field have found their way to the technology of analyzing bioimages. However, "it is very challenging to directly apply existing medical image analysis methods to ... bioimage informatics problems." Some of the challenges bioimages pose to researchers include the difficulty of analyzing at the cellular and molecular scales, the large size of the files, and the amount of time required to manually analyze the files. These challenges require automatic high-throughput analysis techniques, novel algorithms, and advanced systems to deal with the tasks of processing, storing, visualizing, and mining bioimages. ('''[[Bioimage informatics|Full article...]]''')<br />
Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the [[COVID-19]] [[pandemic]]. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems ... ('''[[Journal:Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'': [[Biobank]], [[Translational research]], [[Rural health clinic]]
{{flowlist |
* [[Journal:Data management challenges for artificial intelligence in plant and agricultural research|Data management challenges for artificial intelligence in plant and agricultural research]]
* [[Journal:A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model|A blockchain-driven IoT-based food quality traceability system for dairy products using a deep learning model]]
* [[Journal:Effect of good clinical laboratory practices (GCLP) quality training on knowledge, attitude, and practice among laboratory professionals: Quasi-experimental study|Effect of good clinical laboratory practices (GCLP) quality training on knowledge, attitude, and practice among laboratory professionals: Quasi-experimental study]]
}}

Revision as of 17:11, 22 April 2024

Fig1 Tomich Sustain23 15-8.png

"Why do we need food systems informatics? Introduction to this special collection on smart and connected regional food systems"

Public interest in where food comes from and how it is produced, processed, and distributed has increased over the last few decades, with even greater focus emerging during the COVID-19 pandemic. Mounting evidence and experience point to disturbing weaknesses in our food systems’ abilities to support human livelihoods and wellbeing, and alarming long-term trends regarding both the environmental footprint of food systems and mounting vulnerabilities to shocks and stressors. How can we tackle the “wicked problems” embedded in a food system? More specifically, how can convergent research programs be designed and resulting knowledge implemented to increase inclusion, sustainability, and resilience within these complex systems ... (Full article...)
Recently featured: