Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text.)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 BezuidenhoutDataSciJo2017 16.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Leroux Agri2018 8-6.jpg|240px]]</div>
'''"[[Journal:Technology transfer and true transformation: Implications for open data|Technology transfer and true transformation: Implications for open data]]"'''
'''"[[Journal:GeoFIS: An open-source decision support tool for precision agriculture data|GeoFIS: An open-source decision support tool for precision agriculture data]]"'''


When considering the “openness” of data, it is unsurprising that most conversations focus on the online environment—how data is collated, moved, and recombined for multiple purposes. Nonetheless, it is important to recognize that the movements online are only part of the data lifecycle. Indeed, considering where and how data are created—namely, the research setting—are of key importance to open data initiatives. In particular, such insights offer key understandings of how and why scientists engage with in practices of openness, and how data transitions from personal control to public ownership. This paper examines research settings in low/middle-income countries (LMIC) to better understand how resource limitations influence open data buy-in. ('''[[Journal:Technology transfer and true transformation: Implications for open data|Full article...]]''')<br />
The world we live in is an increasingly spatial and temporal data-rich environment, and the [[agriculture industry]] is no exception. However, data needs to be processed in order to first get [[information]] and then make informed management decisions. The concepts of "precision agriculture" and "smart agriculture" can and will be fully effective when methods and tools are available to practitioners to support this transformation. An open-source program called GeoFIS has been designed with this objective. It was designed to cover the whole process from spatial data to spatial information and decision support. The purpose of this paper is to evaluate the abilities of GeoFIS along with its embedded algorithms to address the main features required by farmers, advisors, or spatial analysts when dealing with precision agriculture data. Three case studies are investigated in the paper: (i) mapping of the spatial variability in the data, (ii) evaluation and cross-comparison of the opportunity for site-specific management in multiple fields, and (iii) delineation of within-field zones for variable-rate applications when these latter are considered opportune. ('''[[Journal:GeoFIS: An open-source decision support tool for precision agriculture data|Full article...]]''')<br />
<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:Technology transfer and true transformation: Implications for open data|Technology transfer and true transformation: Implications for open data]]
: ▪ [[Journal:Eleven quick tips for architecting biomedical informatics workflows with cloud computing|Eleven quick tips for architecting biomedical informatics workflows with cloud computing]]
: ▪ [[Journal:Eleven quick tips for architecting biomedical informatics workflows with cloud computing|Eleven quick tips for architecting biomedical informatics workflows with cloud computing]]
: ▪ [[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system]]
: ▪ [[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system]]
: ▪ [[Journal:Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system|Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system]]

Revision as of 17:41, 27 August 2018

Fig2 Leroux Agri2018 8-6.jpg

"GeoFIS: An open-source decision support tool for precision agriculture data"

The world we live in is an increasingly spatial and temporal data-rich environment, and the agriculture industry is no exception. However, data needs to be processed in order to first get information and then make informed management decisions. The concepts of "precision agriculture" and "smart agriculture" can and will be fully effective when methods and tools are available to practitioners to support this transformation. An open-source program called GeoFIS has been designed with this objective. It was designed to cover the whole process from spatial data to spatial information and decision support. The purpose of this paper is to evaluate the abilities of GeoFIS along with its embedded algorithms to address the main features required by farmers, advisors, or spatial analysts when dealing with precision agriculture data. Three case studies are investigated in the paper: (i) mapping of the spatial variability in the data, (ii) evaluation and cross-comparison of the opportunity for site-specific management in multiple fields, and (iii) delineation of within-field zones for variable-rate applications when these latter are considered opportune. (Full article...)

Recently featured:

Technology transfer and true transformation: Implications for open data
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system