Journal:Development of standard operating protocols for the optimization of Cannabis-based formulations for medical purposes

From LIMSWiki
Revision as of 20:39, 19 August 2019 by Shawndouglas (talk | contribs) (Saving and adding more.)
Jump to navigationJump to search
Full article title Development of standard operating protocols for the optimization of Cannabis-based formulations for medical purposes
Journal Frontiers in Pharmacology
Author(s) Baratta, Francesca; Simiele, Marco; Pignata, Irene; Enri, Lorenzo R.; Torta, Riccardo;
De Luca, Anna; Collino, Massimo; D'Avolio, Antonio; Brusa, Paola
Author affiliation(s) University of Turin, Amedeo di Savoia Hospital, CoQua Lab S.r.l., Città della Salute
Primary contact Email: francesca dot baratta at unito dot it
Editors Kirsch, Wolff M.
Year published 2019
Volume and issue 10
Page(s) 701
DOI 10.3389/fphar.2019.00701
ISSN 1663-9812
Distribution license Creative Commons Attribution 4.0 International
Website https://www.frontiersin.org/articles/10.3389/fphar.2019.00701/full
Download https://www.frontiersin.org/articles/10.3389/fphar.2019.00701/pdf (PDF)

Abstract

Under current legislation in Italy, using the Cannabisplant for medical purposes requires administering it orally in the form of a decoction or as Cannabis oil extract. The scientific literature reports a number of preparation methods, mainly for oils, but no study is available that compares thoroughly, from a technological viewpoint, the Cannabis-based formulations currently administered to patients. With this in mind, this research work aimed to carry out specific formulation studies to design standard operating procedures for the preparation and optimization of Cannabis-based galenic formulations. Both decoctions and oils were prepared under different operating conditions to identify the most efficient process for the production of formulations with a high concentration of decarboxylated delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Regarding Cannabis oil, a new procedure has been developed that allows significantly higher recovery rates for THC and CBD compared with those for water-based extraction methods (decoction) and those for oil-based methods currently in use. Moreover, based on the results, it is possible to affirm that the prescription of Cannabis-based decoctions should not be the recommended first-choice solution for therapy, considering the low concentration of THC and CBD and, consequently, the high volume of decoction that the patient would have to ingest.

Introduction

In the past, the Cannabis plant was widely used for its curative properties in traditional medicine. In the last century, it became the focus of attention for the abuse of its psychotropic effects. Consequently, the cultivation and sale of Cannabis were outlawed in many countries.[1][2] However, in recent years, cannabinoids have seen a resurgence in consumption, in part, because of media attention and, in part, because of misplaced expectations of efficacy in some pathologies unsupported by scientific literature.[3][4]

To date, studies on the therapeutic efficacy of Cannabis in certain pathologies have yielded results that are, at best, contradictory and, generally, inconclusive given that the studies were carried out on inhomogeneous populations, used differing extraction processes, and administered differing dosages.[5] Moreover, the experiments were performed without proper control procedures and were administered by different routes. These uncertainties stem in part from legislative restrictions that, over time, have severely hindered the performance of rigorous clinical studies under controlled and comparable conditions. The legalization of Cannabis for medical use can pave the way for the gathering of reliable clinical and epidemiological data, which are fundamental for a clear definition of the clinical efficacy and the inherent risks, in a medical environment, of Cannabis.

In this context, Italian legislation has recently relaxed regulations on the administration of medical Cannabis for a number of medical conditions; it is now possible to use medical Cannabis in pain therapy, in the treatment of chemotherapy- and radiotherapy-induced nausea and vomiting, and to stimulate appetite in cases of cachexia, anorexia, or cancer and AIDS patients suffering from loss of appetite. It is also being used for other conditions such as glaucoma and Tourette’s syndrome. Moreover, the cultivation of Cannabis for medical use was recently authorized, and, since 2016, a variety of Cannabis, known as FM2, has been available from the Pharmaceutical Chemical Military Facility in Florence, grown under authorization from the Ministry of Health. This material is available as ground, dried flowering tops containing delta-9-tetrahydrocannabinol (THC) in concentrations ranging from 5% to 8% and cannabidiol (CBD) from 7.5% to 12%. These percentages refer to the “total” content, i.e., the sum of the components in acid form (delta-9-tetrahydrocannabinolic acid [THCA] and cannabidiolic acid [CBDA]) and decarboxylated form (THC and CBD).[6][7][8]

The phyto-complex of Cannabis plants is made up of more than 500 different constituents, of which a hundred or more belong to the cannabinoid class.[9] Among the latter, even minor differences in structure can induce very different effects. The molecules of greatest interest from the point of view of their pharmacological activity are decarboxylated THC and decarboxylated CBD because they are more easily absorbed through the intestine.[10] Therefore, the determination of the concentrations of these compounds in the preparations administered to patients is a fundamental prerequisite for therapeutic applications.

Current legislation in Italy allows Cannabis for medical purposes to be administered either orally or by inhaler. Regarding oral administration, according to the guidelines of the Ministry of Health, the first-choice pharmaceutical form is the decoction prepared in compliance with the official Ministry of Health procedure set out in the document Recommendations for the prescribing doctor for the vegetable substance FM2 Cannabis flowering tops. The inhaler route is only to be considered should the oral form not deliver the expected therapeutic effects or the patient’s doctor feels that it is more appropriate. Concerning oral administration, as well as the decoction, the current legislation allows for the administration of medical Cannabis as an oil extract (hereafter oil) provided that the oil content of active ingredients has been titrated by means of specific instrumentation (liquid or gas chromatography coupled with mass spectroscopy).[7][11]

The administration of titrated formulations, with a known quantity of active ingredient, obviously allows for a more uniform therapy and optimization of the risks/benefits. On this point, it is important to stress that although a number of preparation methods have been reported in scientific literature[12][13][14], especially for oils, there is a lack of exhaustive comparative studies that examine from a technological aspect the Cannabis-based galenic formulation procedures currently in use for therapy.

In light of the above, the aim of this present work was to conduct specific formulation studies to design standard operating procedures for the preparation and optimization of Cannabis-based galenic formulations conforming with current health regulations. In particular, regarding the decoctions, the aims were to evaluate if concentrations were similar between preparations with a fixed ratio of Cannabis plant weight to solvent volume and, if it were possible, changing operating procedures to enrich the decoctions in terms of cannabinoid content. Concerning the oil, the principal aim was to evaluate how to set operating conditions to have the highest content of decarboxylated cannabinoids.

The application of a defined operating procedure, which produces reproducible results, is of particular relevance in obtaining standardized products. In particular, this is important in view of conducting further studies designed to optimize the administration of Cannabis for medical use based on patient characteristics. Furthermore, the application of standard procedures is important in view of performing clinical trials to evaluate the real correlation between cannabinoids and clinical outcomes in the real clinical practice.

Materials and methods

Materials for galenic preparations

All of the preparations described below were based on flowering tops from type FM2 Cannabis purchased from the Pharmaceutical Chemicals Military Facility in Florence. The titrated concentrations of active compounds in the unprocessed material (May 2017) were 0.40% ± 0.02% for THC, 5.74% ± 0.18% for THCA, 0.29% ± 0.03% for CBD, and 8.70% ± 0.17% for CBDA. Consequently, the total THC content, calculated using the formula %THC tot = %THC + (0.877 × %THCA), was 5.43% ± 0.15% and the total CBD content, calculated using the formula %CBD tot = %CBD + (0.877 × %CBDA), was 7.92% ± 0.18%. The formulae adjusted for the differing molecular weights of the cannabinoid and carboxylic conjugative components of each cannabinoid. Indeed, the decarboxylated form has a lower molecular weight than that of the carboxylated one because of the loss of a CO2 molecule. The ratio between the two molecular weights is 0.877.[15]

At the end of the experimentation period (June 2018), the titrated quantities of the active constituents in the plant material, calculated using the same equations, were reassessed and were 2.54% ± 0.33% for THC, 2.97% ± 0.41% for THCA, 1.71% ± 0.26% for CBD, and 6.29% ± 0.72% for CBDA. It follows that the total THC was equal to 5.14% ± 0.69% and total CBD was 7.23% ± 0.95%. The other materials used for producing the preparations (olive oil and purified water) were purchased from a pharmaceutical supplies company (Farmalabor s.r.l., Canosa di Puglia, Bari, Italy) and complied with the relevant monograph of the European Pharmacopoeia (Eur.Ph).

Before being used for the formulations described below, the Cannabis plant material was ground for 60 seconds to produce a uniform blend.

Reagents and materials for quantitative analysis

Olive oil (pharmaceutical grade), CBD, cannabinol (CBN), CBDA, cannabidiol-d3 (CBD-d3), THC, (-)-delta-9-tetrahydrocannabinol-d3 (THC-d3), and isopropanol LC-MS grade were purchased from Sigma-Aldrich (Milan, Italy). THCA was purchased from LGC (Milan, Italy). Acetonitrile LC-MS grade was purchased from VWR (Milan, Italy).

High-performance liquid chromatography-grade water was produced with an Elix—coupled with Synergy—UV water purification system (Merck Millipore, Milan, Italy).

Preparation of the decoction

The official procedure issued by the Italian Ministry of Health specifies that a decoction of FM2 Cannabis must be based on a mixture of Cannabis FM2 plant material and cold water in a weight-to-volume ratio of 1:1 (mg/ml). It advises against using a quantity of water less than 100 ml. The Cannabis plant material is added to the cold water, and the water is brought to boil and allowed to simmer on low heat for 15 minutes in a covered vessel. The recommended maximum decoction time is 30 minutes, and the mix should be stirred regularly. The decoction is allowed to cool for 15 minutes, then stirred and filtered. The residue trapped in the filter must be pressed with a spoon to recover as much liquid as possible and strengthen the final solution.[11]

References

  1. Lafaye, G; Karila, L.; Blecha, L. et al. (2017). "Cannabis, cannabinoids, and health". Dialogues in Clinical Neuroscience 19 (3): 309–16. PMC PMC5741114. PMID 29302228. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741114. 
  2. Pisanti, S.; Bifulco, M. (2019). "Medical Cannabis: A plurimillennial history of an evergreen". Journal of Cellular Physiology 234 (6): 8342–8351. doi:10.1002/jcp.27725. PMID 30417354. 
  3. Hill, K.P. (2015). "Medical Marijuana for Treatment of Chronic Pain and Other Medical and Psychiatric Problems: A Clinical Review". JAMA 313 (24): 2474–83. doi:10.1001/jama.2015.6199. PMID 26103031. 
  4. Whiting, P.F.; Wolff, R.F.; Deshpande, S. et al. (2015). "Cannabinoids for Medical Use: A Systematic Review and Meta-analysis". JAMA 313 (24): 2456–73. doi:10.1001/jama.2015.6358. PMID 26103030. 
  5. Bar-Lev, S.L.; Abuhasira, R.; Novack, V. (2018). "Medical cannabis: Aligning use to evidence-based medicine approach". British Journal of Clinical Pharmacology 84 (11): 2458–62. doi:10.1111/bcp.13657. PMC PMC6177696. PMID 29859014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177696. 
  6. "Decreto del Presidente della Repubblica 9 ottobre 1990, n. 309". Gazzetta Ufficiale 255 (67). 1990. https://www.gazzettaufficiale.it/eli/id/1990/10/31/090G0363/sg. 
  7. 7.0 7.1 "Decreto 9 novembre 2015 - Funzioni di Organismo statale per la cannabis previsto dagli articoli 23 e 28 della convenzione unica sugli stupefacenti del 1961, come modificata nel 1972". Gazzetta Ufficiale 279. 2015. https://www.gazzettaufficiale.it/eli/id/2015/11/30/15A08888/sg. 
  8. Stabilimento Chimico Farmaceutico Militare (2019). "Produzione Cannabis ad uso Medico". Progetto pilota Cannabis. https://www.farmaceuticomilitare.it/cannabis.aspx?lnrid=25. Retrieved 25 January 2019. 
  9. Gould, J. (2015). "The cannabis crop". Nature 525 (7570): S2–3. doi:10.1038/525S2a. PMID 26398736. 
  10. Grotenhermen F. (2003). "Pharmacokinetics and pharmacodynamics of cannabinoids". Clinical Pharmacokinetics 42 (4): 327–60. doi:10.2165/00003088-200342040-00003. PMID 12648025. 
  11. 11.0 11.1 Ministero della Salute, Ministero della Difesa (February 2017). "Raccomandazioni per il medico prescrittore di sostanza vegetale cannabis FM2 infiorescenze" (PDF). http://www.salute.gov.it/imgs/C_17_pagineAree_4589_listaFile_itemName_2_file.pdf. Retrieved 28 January 2019. 
  12. Romano, L.L.; Hazekamp, A. (2013). "Cannabis Oil: Chemical evaluation of an upcoming cannabis-based medicine". Cannabinoids 1 (1): 1–11. https://www.cannabis-med.org/index.php?tpl=cannabinoids&id=276&lng=en. 
  13. Citti, C.; Ciccarella, G.; Braghiroli, D. et al. (2016). "Medicinal cannabis: Principal cannabinoids concentration and their stability evaluated by a high performance liquid chromatography coupled to diode array and quadrupole time of flight mass spectrometry method". Journal of Pharmaceutical and Biomedical Analysis 128: 201–209. doi:10.1016/j.jpba.2016.05.033. PMID 27268223. 
  14. Società Italiana Farmacisti Preparatori (17 January 2019). "Estratto oleoso di infiorescenze femminili di Cannabis". https://www.sifap.org/procedure/estrazione-oleosa-di-infiorescenze-femminili-di-cannabi. Retrieved 31 January 2019. 
  15. Pacifici, R.; Marchei, E.; Salvatore, F. et al. (2017). "Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry". Clinical Chemistry and Laboratory Medicine 55 (10): 1555–63. doi:10.1515/cclm-2016-1060. PMID 28207408. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar and punctuation was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added. The original article listed references alphabetically; this version, by design, lists them in order of appearance.