User:Shawndouglas/sandbox/sublevel10

From LIMSWiki
Jump to navigationJump to search

Sandbox begins below

1. Introduction to materials testing laboratories

What is a material? This question is surprisingly more complex for the layperson than may be expected. The definition of "material" has varied significantly over the years, dependent on the course of study, laboratory, author, etc. A 1974 definition by Richardson and Peterson that has seen some use in academic study defines a material as "any nonliving matter of academic, engineering, or commercial importance."[1] But recently biomaterials like biopolymers (as replacements for plastics)[2] and even natural[3] and engineered biological tissues[4] may be referenced as "materials." (And to Richardson and Peterson's credit, they do add in the preface of their 1974 work that "[a]lthough the volumes are directed toward the physical sciences, they can also be of value for the biological scientist with materials problems."[5] A modern example would be biodegradable materials research for tissue and medical implant engineering.[6]) Yet today more questions arise. what of matter that doesn't have "academic, engineering, or commercial importance"; can it now be called a "material" in 2023? What if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists? Indeed, the definition of "material" today is no easy task. This isn't made easier when even modern textbooks introduce the topic of materials science without aptly defining what a material actually is[7], let alone what materials science is.[8] Perhaps the writers of said textbooks assume that the definitions of "material" and "materials science" have a "well duh" response.

To complicate things further, a material can be defined based upon the context of use. Take for example the ISO 10303-45 standard by the International Organization for Standardization (ISO), which addresses the representation and exchange of material and product manufacturing information in a standardized way, specifically describing how material and other engineering properties can be described in the model/framework.[9][10] The context here is "standardized data transfer of material- and product-related data," which in turn involves ontologies that limit the complexity of materials science discourse and help better organize materials and product data into information and knowledge. As such, the ISO 10303 set of standards must define "material," and 10303-45 complicates matters further in this regard.


Materials are inherently linked to creation (manufacturing and construction).


1.1 Materials testing labs, then and now

1.1.1 Materials testing 2.0


1.2 Industries, products, and raw materials

1.3 Laboratory roles and activities in the industry

1.3.1 R&D roles and activities

1.3.2 Pre-manufacturing and manufacturing roles and activities

1.3.3 Post-production quality control and regulatory roles and activities

References

  1. Richardson, James H.; Peterson, Ronald V. (1974). "Chapter 1: Introduction to Analytical Methods". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. 2. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  2. Das, Abinash; Ringu, Togam; Ghosh, Sampad; Pramanik, Nabakumar (1 July 2023). "A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers" (in en). Polymer Bulletin 80 (7): 7247–7312. doi:10.1007/s00289-022-04443-4. ISSN 0170-0839. PMC PMC9409625. PMID 36043186. https://link.springer.com/10.1007/s00289-022-04443-4. 
  3. Kurniawan, Nicholas A.; Bouten, Carlijn V.C. (1 April 2018). "Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models" (in en). Extreme Mechanics Letters 20: 59–64. doi:10.1016/j.eml.2018.01.004. https://linkinghub.elsevier.com/retrieve/pii/S2352431617301864. 
  4. Kim, Hyun S.; Kumbar, Sangamesh G.; Nukavarapu, Syam P. (1 March 2021). "Biomaterial-directed cell behavior for tissue engineering" (in en). Current Opinion in Biomedical Engineering 17: 100260. doi:10.1016/j.cobme.2020.100260. PMC PMC7839921. PMID 33521410. https://linkinghub.elsevier.com/retrieve/pii/S246845112030057X. 
  5. Richardson, James H.; Peterson, Ronald V. (1974). "Preface". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. xiii. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  6. Modrák, Marcel; Trebuňová, Marianna; Balogová, Alena Findrik; Hudák, Radovan; Živčák, Jozef (16 March 2023). "Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications" (in en). Journal of Functional Biomaterials 14 (3): 159. doi:10.3390/jfb14030159. ISSN 2079-4983. PMC PMC10051288. PMID 36976083. https://www.mdpi.com/2079-4983/14/3/159. 
  7. Callister, William D.; Rethwisch, David G. (2021). "Chapter 1. Introduction". Fundamentals of materials science and engineering: An integrated approach. Hoboken: Wiley. pp. 2–18. ISBN 978-1-119-74773-4. https://books.google.com/books?id=NC09EAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover. 
  8. Sutton, Adrian P. (2021). Concepts of materials science (First edition ed.). Oxford [England] ; New York, NY: Oxford University Oress. ISBN 978-0-19-284683-9. 
  9. "ISO 10303-45:2019 Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resource: Material and other engineering properties". International Organization for Standardization. November 2019. https://www.iso.org/standard/78581.html. Retrieved 20 September 2023. 
  10. Swindells, Norman (2009). "The Representation and Exchange of Material and Other Engineering Properties" (in en). Data Science Journal 8: 190–200. doi:10.2481/dsj.008-007. ISSN 1683-1470. http://datascience.codata.org/articles/abstract/10.2481/dsj.008-007/.