Journal:Registered data-centered lab management system based on data ownership security architecture

From LIMSWiki
Revision as of 20:47, 28 July 2023 by Shawndouglas (talk | contribs) (Created stub. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title Registered data-centered lab management system based on data ownership security architecture
Journal Electronics
Author(s) Zheng, Xuying; Miao, Fang; Udomwong, Piyachat; Chakpitak, Nopasit
Author affiliation(s) Chiangmai University, Chengdu University
Primary contact Email: nopasit at cmuic dot net
Year published 2023
Volume and issue 12(9)
Article # 1817
DOI 10.3390/electronics12081817
ISSN 2079-9292
Distribution license Creative Commons Attribution 4.0 International
Website https://www.mdpi.com/2079-9292/12/8/1817
Download https://www.mdpi.com/2079-9292/12/8/1817/pdf?version=1681215589 (PDF)

Abstract

University and college laboratories are important places to train professional and technical personnel. Various regulatory departments in colleges and universities still rely on traditional laboratory management in research projects, which are prone to problems such as untimely information and data transmission. The present study aimed to propose a new method to solve the problem of data islands, explicit ownership, conditional sharing, data security, and efficiency during laboratory data management. Hence, this study aimed to develop a data-centered lab management system that enhances the security of laboratory data management and allows the data owners of the labs to control data sharing with other users. The architecture ensures data privacy by binding data ownership with a person using a key management method. To achieve secure data flow, data ownership conversion through the process of authorization and confirmation was introduced. The designed lab management system enables laboratory regulatory departments to receive data in a secure form by using this platform, which could solve data sharing barriers. Finally, the proposed system was applied and run in different server environments by implementing data security registration, authorization, confirmation, and conditional sharing using SM2, SM4, RSA, and AES algorithms. The system was evaluated in terms of the execution time for several lab data with different sizes. The findings of this study indicate that the proposed strategy is secure and efficient for lab data sharing across domains.

Keywords: university laboratory management, data sharing, data ownership safety architecture, conditional sharing, security and efficiency

Introduction

The importance of knowledge for organizations is now widely recognized, being one of the resources whose management influences the success of organizations through the exchange and sharing of information, knowledge, and experience among its members. Numerous challenges are associated with the management of laboratory data, as labs generate a lot of experimental and management data on a daily basis. Frequent experimental accidents and the leakage of hazardous chemicals is worthy of attention. Supervision departments, such as the Education Bureau, Emergency Bureau, and Public Security Department, need various types of laboratory management data to report while supervising laboratory safety.

At present, existing laboratory management systems used by each university, regulatory department, and even various laboratories are different, which leads to obvious problems when lab data collection or emergency response is needed. For example, which laboratory management data are classified confidential, and which data can be handed over to relevant departments? Who must claim the ownership of laboratory-related data? Which departments can view or use the data? Could lab data be transferred to other departments? These questions raised laboratory data ownership issues. Secondly, some data that relate to laboratory management need to be kept confidential. Where and how can we best secure this data? Is it safe for different departments to transmit data? How can we guarantee that there will be no data transfer to others? These can be summarized as data security storage and transmission questions. In recent years, frequent university laboratory accidents have occurred; in such cases, emergency responding units and other regulatory departments need to collect real-time lab-related data. If it is still a regular report retrieval process, it cannot meet the requirements of time efficiency. So, we need to find efficient and trustworthy methods to solve this problem of obtaining data in a timely manner.

The main reason for the above problems is that laboratory management data ownership is unclear, and the existing laboratory information management systems (LIMS) of each branch are independent. It is impossible to collect real-time, tamper-free, statistically accurate data when it is needed. To deal with these problems, we intend to adopt data ownership security architecture (DOSA) to securely circulate laboratory management data and cultivate an ecological and sustainable forest from the “flowerpot” of each independent system. [1]

Laboratories are currently using LIMS frequently. [2] A university may also have multiple management systems, including an equipment management system, a chemical management system, a safety examination system, etc. Related systems comprise relevant departments of the laboratory, such as the experiment management department of the Education Bureau, the accident handling department of the Emergency Bureau, and the hazardous chemicals supervision department of Public Security. Such complicated systems make it difficult to obtain information accurately and quickly when the same report requires the cooperation of different departments or laboratories. Compared to traditional manual records, the LIMS used by a specific business unit or company can be easily outdated and has high maintenance costs. Once the database needs major updates related to its data source, the existing system cannot meet the demand, and a new system must be designed so that all data can be transferred, resulting in increased costs. The linkage between different systems is weak, the efficiency is relatively low, and the security is not uniform and difficult to guarantee when it is necessary to submit data.

Blockchain poses one potential solution. The medical industry uses the blockchain system to manage medical imaging data, and the banking system uses blockchain as a new type of financial technology. [3] Blockchain has high energy consumption, expensive development costs, but relatively high security. At present, some scholars have produced a framework diagram of the blockchain management in university education, but there is no corresponding technical means. [4]

Considering the problems mentioned above, the lab industry would require a technology that allows data to flow securely and efficiently. This article’s contributes discussion about potential technology to solve such problems. In our work, experiment-related data management is based on the data ownership security architecture. This security technology is built such that data ownership binds with a person and it can be safely registered on this platform; meanwhile, ownership of data can be determined, and data users and owners can conditionally share or trade using ownership conversion across domains and across borders efficiently and securely. Our proposed laboratory data management architecture is shown in Figure 1.

The current study has been organized as follows. The next section explains related theories and key management. After that, we present the core strategies used, including laboratory data encrypted registration and an authorized transfer method for conditional sharing. We then detail the whole lab management framework and the incident searching case study based on DOSA using the above ownership conversion method. We then discuss and verify the effectiveness of the data flow process using key management based on proposed core strategies. Finally, we provide our conclusions.

Related work

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added.