User:Shawndouglas/sandbox/sublevel16
This is sublevel16 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see my discussion page instead. |
Sandbox begins below
Title: What types of laboratory testing are affected by ISO/IEC 17025?
Author for citation: Shawn E. Douglas
License for content: Creative Commons Attribution-ShareAlike 4.0 International
Publication date: TBD
Introduction
International Organization for Standardization (ISO)
Laboratories using ISO/IEC 17025
The scope section of ISO/IEC 17025 indicates that the standard "is applicable to all organizations performing laboratory activities, regardless of the number of personnel." Further, in its terms and definitions section, the standard states that a laboratory—for the purposes of the document—is a "body that performs one or more of ... testing, calibration, [and] sampling, associated with subsequent testing or calibration." Of course, these types of activities occur in a wide variety of industry contexts, including environmental science, forensic science, food and beverage manufacturing, and more.
See Journal:Practical considerations for laboratories: Implementing a holistic quality management system
Testing laboratories (including regulatory laboratories)
- radiological testing of food and drinking water[1]
- pesticide testing of honey[2]
- forensic paternity testing[3]
Product development and manufacturing labs
Basic and applied research labs
Reference measurement and calibration labs
- radiation monitoring instruments[1]
- electronic medical equipment[4]
- laser and optical communication equipment[5]
A note about clinical laboratories
You may notice that the clinical laboratory doesn't appear in the above listing. That is because quality management in the clinical lab is best guided by ISO 15189:2022 Medical laboratories — Requirements for quality and competence. (This is not to say that ISO/IEC 17025-compliant environments haven't conducted clinical analyses, as they have[6][7][8][9], but it's not the most ideal standard to be compliant with in the clinical environment.) The standard, which received an update in December 2022, is described by the ISO as being "applicable to medical laboratories in developing their management systems and assessing their competence. It is also applicable for confirming or recognizing the competence of medical laboratories by laboratory users, regulatory authorities and accreditation bodies."[10] Development of the standard began in the mid-1990s due to the lack of applicability ISO/IEC 17025 and ISO 9001 had to clinical labs. First published in February 2003, the standard was, however, developed with ISO/IEC 17025 and ISO 9001 in mind, taking the technical requirements of the first and the quality management requirements of the latter, while also adding input on professional requirements from the European Communities Confederation of Clinical Chemistry (EC4).[11] All said, ISO 15189 is the best quality management standard for clinical laboratories as it takes into consideration the specific requirements of the medical environment and the importance of the medical laboratory to improving patient safety and outcomes.[12]
A potential companion to ISO 15189:2022 is the World Health Organization's Laboratory Quality Management System: Handbook. Though a bit outdated, as it was developed in 2011, the WHO handbook is based off of ISO 15189 and Clinical and Laboratory Standards Institute's (CLSI's) QMS01 A Quality Management System Model for Laboratory Services (or more specifically, its predecessor documents HS1 and GP26[13][14]).[12] The WHO and CLSI tend to go beyond ISO/IEC 17025 by incorporating 12 quality system essentials (QSEs)—"a set of coordinated activities that serve as building blocks for quality management"—as part of their QMS framework and emphasize that all must be met for overall clinical laboratory quality improvement to be realized.[12][15]
For more on this topic, see Plebani and Sciacovelli's "ISO 15189 accreditation: Navigation between quality management and patient safety."
Conclusion
References
- ↑ 1.0 1.1 Rao, Dd (2021). "ISO/IEC 17025: Accreditation standard for testing and calibration laboratories" (in en). Radiation Protection and Environment 44 (3): 121. doi:10.4103/rpe.rpe_41_21. ISSN 0972-0464. http://www.rpe.org.in/text.asp?2021/44/3/121/334784.
- ↑ Pirard, C.; Widart, J.; Nguyen, B.K.; Deleuze, C.; Heudt, L.; Haubruge, E.; De Pauw, E.; Focant, J.-F. (1 June 2007). "Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry" (in en). Journal of Chromatography A 1152 (1-2): 116–123. doi:10.1016/j.chroma.2007.03.035. https://linkinghub.elsevier.com/retrieve/pii/S002196730700502X.
- ↑ Morling, Niels; Allen, Robert W; Carracedo, Angel; Geada, Helena; Guidet, Francois; Hallenberg, Charlotte; Martin, Wolfgang; Mayr, Wolfgang R et al. (1 October 2002). "Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases" (in en). Forensic Science International 129 (3): 148–157. doi:10.1016/S0379-0738(02)00289-X. https://linkinghub.elsevier.com/retrieve/pii/S037907380200289X.
- ↑ Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F (1 February 2010). "Aspectos fundamentales para la acreditación de laboratorios de calibración de equipos médicos en Colombia" (in en). Revista de Salud Pública 12 (1): 126–134. doi:10.1590/S0124-00642010000100012. ISSN 0124-0064. http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S0124-00642010000100012&lng=es&nrm=iso&tlng=es.
- ↑ Lehman, J.H.; Vayshenker, I.; Livigni, D.J.; Hadler, J. (1 March 2004). "Intramural comparison of NIST laser and optical fiber power calibrations". Journal of Research of the National Institute of Standards and Technology 109 (2): 291. doi:10.6028/jres.109.019. PMC PMC4853116. PMID 27366611. https://nvlpubs.nist.gov/nistpubs/jres/109/2/j92leh.pdf.
- ↑ Asprang, Aud Frøysa; Jenum, Pål A. (6 November 2003). "[What does accreditation of medical microbiological laboratories mean to patients?"]. Tidsskrift for Den Norske Laegeforening: Tidsskrift for Praktisk Medicin, Ny Raekke 123 (21): 3051–3053. ISSN 0807-7096. PMID 14618175. https://pubmed.ncbi.nlm.nih.gov/14618175.
- ↑ Weinmann, Wolfgang; Schaefer, Patrick; Thierauf, Annette; Schreiber, André; Wurst, Friedrich Martin (1 February 2004). "Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/tandem mass spectrometry according to forensic guidelines" (in en). Journal of the American Society for Mass Spectrometry 15 (2): 188–193. doi:10.1016/j.jasms.2003.10.010. ISSN 1044-0305. https://pubs.acs.org/doi/10.1016/j.jasms.2003.10.010.
- ↑ Cay, A.B.; Van Der Stede, Stede Y. (1 December 2010). "Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunoabsorbent assay to detect Aujeszky's diseaese virus glycoprotein E (gE): -EN- -FR- Influence de la température d'incubation et de la composition des lots sur la sensibilité d'une épreuve immuno-enzymatique utilisée pour déceler la glycoprotéine E (gE) du virus de la maladie d'Aujeszky -ES- Influencia de la temperatura de incubación y los componentes del lote sobre la sensibilidad de un ensayo immunoenzymático para detectar la glucoproteína E (gE) del virus de la enfermedad de Aujeszky". Revue Scientifique et Technique de l'OIE 29 (3): 565–571. doi:10.20506/rst.29.3.2002. ISSN 0253-1933. https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=31143.
- ↑ Gerace, E.; Salomone, A.; Fasano, F.; Costa, R.; Boschi, D.; Di Stilo, A.; Vincenti, M. (1 April 2011). "Validation of a GC/MS method for the detection of two quinolinone-derived selective androgen receptor modulators in doping control analysis" (in en). Analytical and Bioanalytical Chemistry 400 (1): 137–144. doi:10.1007/s00216-010-4569-8. ISSN 1618-2642. http://link.springer.com/10.1007/s00216-010-4569-8.
- ↑ "ISO 15189:2022 Medical laboratories — Requirements for quality and competence". International Organization for Standardization. December 2022. https://www.iso.org/standard/76677.html. Retrieved 23 December 2022.
- ↑ Plebani, Mario; Sciacovelli, Laura (1 September 2017). "ISO 15189 Accreditation: Navigation Between Quality Management and Patient Safety". Journal of Medical Biochemistry 36 (3): 225–230. doi:10.1515/jomb-2017-0038. ISSN 1452-8266. PMC PMC6287216. PMID 30564060. https://scindeks.ceon.rs/article.aspx?artid=1452-82581703225P.
- ↑ 12.0 12.1 12.2 World Health Organization (2011). "Laboratory Quality Management System: Handbook" (PDF). World Health Organization. ISBN 9789241548274. http://apps.who.int/iris/bitstream/handle/10665/44665/9789241548274_eng.pdf?sequence=1.
- ↑ National Committee for Clinical Laboratory Standards (November 2004). "CLSI HS01-A2". ANSI. https://webstore.ansi.org/standards/clsi/clsihs01a2.
- ↑ National Committee for Clinical Laboratory Standards (November 2004). "CLSI GP26-A3". ANSI. https://webstore.ansi.org/standards/clsi/clsigp26a3.
- ↑ Clinical and Laboratory Standards Institute (2022). "Quality System Essentials". Clinical and Laboratory Standards Institute. https://clsi.org/standards-development/quality-system-essentials/.