Journal:Designing a knowledge management system for naval materials failures
Full article title | Designing a knowledge management system for naval materials failures |
---|---|
Journal | MATEC Web of Conferences |
Author(s) | Melanitis, Nikolaos; Giannakopoulos, George; Stamatakis, Konstantinos; Mouzakis, Dionysios; Koutsomichalis, Aggelos |
Author affiliation(s) | Hellenic Naval Academy, Institute of Informatics & Telecommunications |
Primary contact | Email: melanitis at hna dot gr |
Year published | 2021 |
Volume and issue | 349 |
Article # | 03006 |
DOI | 10.1051/matecconf/202134903006 |
ISSN | 2261-236X |
Distribution license | Creative Commons Attribution 4.0 International |
Website | https://www.matec-conferences.org/articles/matecconf/abs/2021/18/matecconf_iceaf2021_03006/matecconf_iceaf2021_03006.html |
Download | https://www.matec-conferences.org/articles/matecconf/pdf/2021/18/matecconf_iceaf2021_03006.pdf (PDF) |
This article should be considered a work in progress and incomplete. Consider this article incomplete until this notice is removed. |
Abstract
Implemented materials fail from time to time, requiring failure analysis. This type of scientific analysis expands into forensic engineering for it aims not only to identify individual and symptomatic reasons for failure, but also to assess and understand repetitive failure patterns, which could be related to underlying material faults, design mistakes, or maintenance omissions. Significant information can be gained and studied from carefully documenting and managing the data that comes from failure analysis of materials, including in the naval industry.
The NAVMAT research project, presented herein, attempts an interdisciplinary approach to materials informatics by integrating materials engineering and informatics under a platform of knowledge management. Our approach utilizes a focused, common-cause failure analysis methodology for the naval and marine environment. The platform's design is dedicated to the effective recording, efficient indexing, and easy and accurate retrieval of relevant information, including the associated history of maintenance and secure operation concerning failure incidents of marine materials, components, and systems in an organizational fleet. Based on a materials failure ontology, utilizing artificial intelligence (AI) algorithms and modern approaches to data handling, NAVMAT aims to optimize naval materials failure analysis management and support decision making in maintenance and repair operations (MRO), materials supply management, and staff training. It will eventually support decision making through appropriate AI and natural language processing methods.
Keywords: materials informatics, failure analysis, forensic engineering, naval and marine materials, information management
Introduction: Addressing the need
Some of the most important considerations in materials management and the necessary failure analysis of those materials for a large organization, industry, or service provider include the meticulous recording and indexing of an incident, the assessment and identification of causes, and the proposal of feasible solutions. To best handle these considerations, quick access to and retrieval of knowledge is a prerequisite. The related information is recorded at the platform level, but its integration at a central level and redistribution as knowledge and guidelines is not an easy process. As a result, problem solving operations may repeat when the same or similar problem appears in a different area of the organization, resulting in human and financial resources being “wasted” for re-interpreting the incident and operational readiness potentially being compromised. The disruption in the flow of knowledge (i.e., the knowledge gap) may be further intensified when taking into account:
- The geographically distributed nature of platforms and units of a large organization (such as a naval fleet). Direct and seamless communication and knowledge transfer is a mark of efficiency.
- The career path of staff, which are frequently transferred and reallocated (as with the military). The job requirements of the new post might be completely different, and the original knowledge acquired is not easily passed on during the traditional transfer of information from the predecessor to the newcomer.
- The early retirement of individuals due to the specific characteristics of some professions (such as the navy officer). This may deprive the organization of critical knowledge transfer. Institutional and legal obstacles may further impede knowledge transfer from retired to active personnel.
These types of issues arise in the maritime trades. For example, a marine engine shaft failure (together with the knowledge acquired by the staff involved in failure analysis and the resulting repairs), remains a faint trace of information in the memory of the ship, when after three years, all staff may have been re-allocated.
To cope with the above challenges, we have developed, promoted, and established NAVMAT, a platform for the recording, indexing, comparing, assessment, and retrieval of all information relevant to failure analysis in the defined environment, including history of operations and maintenance, scientific evidence, and testimony. NAVMAT accounts for the variability of language use when reporting, together with the multi-modal assets attached to such events (e.g., measurements, photos, etc.), fulfilling the requirement for an intelligent system beyond simple keyword-based indexing and retrieval. Its design is based on an interdisciplinary approach to materials informatics by integrating materials engineering and informatics under a platform of knowledge management.
State of the art
Knowledge management has been linked to artificial intelligence (AI) for more than 20 years. Such management has a strong organizational component, beyond technical requirements. Early on, the challenge of forming a knowledge management culture within an organization was reported to be estimated as “90% of the effort” by business leaders. [1] Today, with the increased digitization of business and the transfer of information in everyday practice, the cultural gaps have been somewhat reduced. However, a number of settings may still have only limited access to effective, user-friendly knowledge management systems. As such, and despite the fact that today we discuss and implement concepts such as Industry 4.0, the internet of things (IoT) [2], and condition monitoring and diagnostic engineering management (COMADEM) [3], even reactive (vs. proactive) use of pre-existing knowledge at the human expert level for material failures is still an open challenge. [4]
In the literature, one can find approaches and systems that utilize data mining and analysis of text in manufacturing to improve “maintenance knowledge intelligence.” [5] Through analyses of maintenance reports, operators’ workbooks, and digital logbooks, such systems aim to identify hidden patterns and relations between settings, incidents, and human reactions. These approaches, however, may act in an a posteriori manner, not facilitating the user in the data entry process (as NAVMAT does). Approaches using expert systems have also been applied in the past [6] for settings such as onshore pipelines. However, again the focus is on the post-entry analysis and organization of documents.
Other approaches focus on the analysis of machine maintenance and use in a cloud setting to estimate the remaining useful life of components. [7] In such cases, however, the aim is to optimize predictors and not to allow for use and re-use of human knowledge as part of a collaborative system.
The development of a knowledge management system for automobile system failures [8] was founded of the creation of a failure analysis ontology from maintenance experience, which allows connecting the pre-existing human understanding of the domain to the knowledge system at hand. In the NAVMAT setting, we utilize a similar view of preexisting knowledge by initializing a related ontology in the lexical and semantic resource components, which can evolve over time based on everyday system use.
Case-based reasoning techniques are considered to be the most suitable for generic failure analysis due to the complexity of knowledge required. [9] Such techniques have been employed to support users in hard disk failure analysis [10], using a reverse-index based approach (e.g., Lucene.NET [11]) and a cosine-similarity metric to identify similar use cases. In our setting, we take advantage of the expert ontology to not only allow for intelligent and agile search and retrieval, but also to facilitate data entry.
In the medical field, the need for image interpretation (e.g., in bone fractures) has triggered the development of algorithms based on artificial neural network (ANN) architectures. [12] Such systems may involve unsupervised or supervised learning. [13, 14] We similar potential in our implementation.
Given these advancements, NAVMAT aims to provide a point of reference for human-centric, intelligent knowledge management of naval materials failure, throughout the full lifecycle of such information, from knowledge encoding to incident data gathering and entry, and then to its search and reuse for decision support.
The concept and tools
References
Notes
This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. Some grammar and spelling were cleaned up for better readability.