User:Shawndouglas/sandbox/sublevel1
1.1.1 Pathology
Pathology is at the heart of a medical laboratory's operations. In the context of modern medical treatment, the laboratory practice of pathology involves analytical workflow, which falls within the contemporary medical field of "general pathology," and the associated determination of the causes and effects of disease and other medical ailments. General pathology is broadly composed of a number of distinct but inter-related medical specialties that involve the analysis of tissue, cell, and body fluid specimens to better understand the cause, pathogenesis, morphologic changes, and clinical manifestations of a disease.[1] In common medical practice, general pathology is mostly concerned with analyzing known clinical abnormalities that are markers or precursors for both infectious and non-infectious disease and is conducted by experts in one of two major specialties: anatomical pathology and clinical pathology. Additional subspecialties of pathology may further specialize in specific diseases (such as cancer) or situational focuses (such as cause of death).
1.1.1.1 Anatomical vs. clinical pathology
Anatomical (or "anatomic") pathology is a medical specialty of pathology that is concerned with the gross, microscopic, chemical, immunologic, and molecular examination of organs, tissues, and whole bodies (as in autopsy) to determine the presence of disease. Its subspecialties include surgical pathology (e.g., neuropathology, dermatopathology, etc.), cytopathology, and forensic pathology.[2] Clinical pathology, however, is concerned with the diagnosis of disease based on the laboratory analysis of bodily fluids such as blood, urine, and tissues using the tools of chemistry, microbiology, hematology, and molecular analysis. Its subspecialties include hematopathology, immunopathology, and molecular pathology.[2] Both anatomical and clinical pathologists work in close collaboration with clinical scientists (i.e., clinical biochemists, clinical microbiologists, etc.), medical technologists, surgeons, hospital administrators, and referring physicians to ensure the accuracy and optimal utilization of laboratory testing. Yet some argue the distinction between anatomic and clinical pathology is increasingly blurred by the introduction of molecular technologies that require new expertise and the need to provide patients and referring physicians with integrated diagnostic reports.[3][4]
Regardless, some differences between anatomical and clinical pathology remain distinct[5]:
- Specific dictionary-driven tests are found in clinical pathology environments, but not so much in anatomic pathology environments.
- Ordered anatomic pathology tests typically require more information than clinical pathology tests.
- A single anatomic pathology order may be comprised of several tissues from several organs; clinical pathology orders usually do not.
- Anatomic pathology specimen collection may be a procedural, multi-step process, while clinical pathology specimen collection is routinely more simple.
The differences between the two may appear to be small, but a differentiation in laboratory workflow between the two is apparent, to the point that developers of laboratory information systems (LIS) and anatomic pathology computer systems used in the pathology fields have created different functionality for them. Specimen collection, receipt, and tracking; work distribution; and report generation may vary–sometimes significantly–between the two, requiring targeted functionality in the utilized software.[6][7]
1.1.1.2 Forensic pathology
Typically associated with a medical examiner or coroner, forensic pathology is focused on identifying and determining the cause of death of an individual. This includes not only the analysis of wounds and injuries but also full tissue specimens, identifying traumas—as well as chemical, biological, and solid foreign bodies and contaminates—that may have played a role in the individual's death. Anatomic pathology plays an important part of the examiner's analyses—represented by the forensic pathologist's required training—though clinical pathology also plays a role.[8] Outside the gross examination of a body, the forensic pathologist will rely on the lab to conduct a variety of analyses. Whole organs and slides containing cross-sectional slivers of organs, as well as blood, urine, bile, and vitreous humor may be analyzed for toxicology, DNA typing, infectious diseases, disorders, or other chemical tests.[9] In particular, maintaining chain of custody for such specimens is vital to ensure analyses are correct and evidence is not compromised. Though a medical laboratory, the forensic pathology laboratory isn't held to the same CLIA standards; they must be accredited by a related organization such as The American Society of Crime Laboratory Directors/Laboratory Accreditation Board to ensure the lab operates at prescribed standards.[9]
References
- ↑ Kumar, V.; Abbas, A.; Fausto, N.; Aster, J., ed. (2010). Robbins and Cotran Pathologic Basis of Disease, Professional Edition (8th ed.). Saunders Elsevier. ISBN 9781416031215.
- ↑ 2.0 2.1 Adelman, H.C. (2009). Forensic Medicine. Infobase Publishing. pp. 3–4. ISBN 1438103816. https://books.google.com/books?id=x5FftcZOv1UC&pg=PA3.
- ↑ Friedberg, R. (July 2013). "Evolving Changes in Health Care and Implications for Pathology and Laboratory Practice". 2013 Summer Anatomic Pathology Conference. Florida Society of Pathologists. https://scholarlycommons.libraryinfo.bhs.org/all_works/7637/. Retrieved 18 November 2021. "The advent of molecular pathology and molecular imaging tools only serves to further blur the distinction between anatomic and clinical pathology..."
- ↑ Paxton, A. (February 2011). "All for one—unifying CP and AP data". CAP Today. College of American Pathologists. http://www.captodayonline.com/Archives/0211/0211a_cp_ap.html. Retrieved 18 November 2021. "Traditionally, CP systems are based on discrete data elements while AP systems are based on blocks of text. But that distinction is starting to blur, because AP is moving to synoptic reporting, and that includes the creation of discrete data components as well as textual reporting"
- ↑ Park, S.L.; Pantanowitz, L.; Sharma, G. et al. (2012). "Anatomic Pathology Laboratory Information Systems: A Review". Advances in Anatomic Pathology 19 (2): 81–96. doi:10.1097/PAP.0b013e318248b787. PMID 22313836.
- ↑ Henricks, W.H. (9 October 2012). "LIS Basics: CP and AP LIS Design and Operations" (PDF). Pathology Informatics 2012. Archived from the original on 10 September 2015. https://web.archive.org/web/20150910050825/http://www.pathinformatics.pitt.edu/sites/default/files/2012Powerpoints/01HenricksTues.pdf. Retrieved 18 November 2021.
- ↑ Clifford, L.-J. (August 2011). "The evolving LIS needs to be "everything" for today's laboratories". Medical Laboratory Observer. Endeavor Business Media, LLC. https://www.mlo-online.com/home/article/13004085/the-evolving-lis-needs-to-be-everything-for-todays-laboratories. Retrieved 18 November 2021.
- ↑ Prahlow, J. (2010). "Chapter 3: Introduction to Forensic Pathology". Forensic Pathology for Police, Death Investigators, Attorneys, and Forensic Scientists. Humana Press. pp. 35–48. doi:10.1007/978-1-59745-404-9. ISBN 9781588299758. https://books.google.com/books?id=rF1WTiX0nHEC&pg=PA35.
- ↑ 9.0 9.1 "The World of Forensic Laboratory Testing". Testing.com. OneCare Media. 9 November 2021. https://www.testing.com/articles/forensic-testing/. Retrieved 18 November 2021.