Journal:Data management and modeling in plant biology

From LIMSWiki
Revision as of 17:49, 17 December 2021 by Shawndouglas (talk | contribs) (Created stub. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title Data management and modeling in plant biology
Journal Frontiers in Plant Science
Author(s) Krantz, Maria; Zimmer, David; Adler, Stephan O.; Kitashova, Anastasia; Klipp, Edda; Mühlhaus, Timo; Nägele, Thomas
Author affiliation(s) Humboldt-Universität zu Berlin, Technische Universität Kaiserslautern, Ludwig-Maximilians-Universität München
Primary contact Email: thomas dot naegele at lmu dot de
Editors Fukushima, Atsushi
Year published 2021
Volume and issue 12
Article # 717958
DOI 10.3389/fpls.2021.717958
ISSN 1664-462X
Distribution license Creative Commons Attribution 4.0 International
Website https://www.frontiersin.org/articles/10.3389/fpls.2021.717958/full
Download https://www.frontiersin.org/articles/10.3389/fpls.2021.717958/pdf (PDF)

Abstract

The study of plant-environment interactions is a multidisciplinary research field. With the emergence of quantitative large-scale and high-throughput techniques, the amount and dimensionality of experimental data have strongly increased. Appropriate strategies for data storage, management, and evaluation are needed to make efficient use of experimental findings. Computational approaches to data mining are essential for deriving statistical trends and signatures contained in data matrices. Although, current biology is challenged by high data dimensionality in general, this is particularly true for plant biology. As sessile organisms, plants have to cope with environmental fluctuations. This typically results in strong dynamics of metabolite and protein concentrations, which are often challenging to quantify. Summarizing experimental output results in complex data arrays, which need computational statistics and numerical methods for building quantitative models. Experimental findings need to be combined with computational models to gain a mechanistic understanding of plant metabolism. For this, bioinformatics and mathematics need to be combined with experimental setups in physiology, biochemistry, and molecular biology. This review presents and discusses concepts at the interface of experiment and computation, which are likely to shape current and future plant biology. Finally, this interface is discussed with regard to its capabilities and limitations to develop a quantitative model of plant-environment interactions.

Keywords: genome-scale networks, omics analysis, metabolic regulation, plant-environment interactions, machine learning, mathematical modeling, differential equations

Introduction

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. In some cases important information was missing from the references, and that information was added. The original article lists references in alphabetical order; however, this version lists them in order of appearance, by design.