Journal:Current approaches in laboratory testing for SARS-CoV-2
Full article title | Current approaches in laboratory testing for SARS-CoV-2 |
---|---|
Journal | International Journal of Infectious Diseases |
Author(s) | Xu, Yuzhong; Cheng, Minggang; Chen, Xinchun; Zhu, Jialou |
Author affiliation(s) | Shenzhen Baoan Hospital, Shenzhen University |
Primary contact | Email: zhujialou at szu dot edu dot cn |
Year published | 2020 |
Volume and issue | 100 |
Page(s) | 7–9 |
DOI | 10.1016/j.ijid.2020.08.041 |
ISSN | 1201-9712 |
Distribution license | Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International |
Website | https://www.sciencedirect.com/science/article/pii/S1201971220306718 |
Download | https://www.sciencedirect.com/science/article/pii/S1201971220306718/pdfft (PDF) |
This article should be considered a work in progress and incomplete. Consider this article incomplete until this notice is removed. |
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which originated in Wuhan, Hubei Province, China, has rapidly spread to produce a global pandemic. It is now clear that person-to-person transmission of SARS-CoV-2 has been occurring and that the virus has been dramatically spreading in recent months. Early, rapid, and accurate diagnosis is of great significance for curtailing the spread of SARS-CoV-2. There are currently several diagnostic techniques (e.g., viral culture and nucleic acid amplification test) being used to detect the virus. However, the sensitivity and specificity of these methods are quite different, with the sample source and detection limit varying greatly. This study reviewed all types and characteristics of the currently available laboratory diagnostic assays for detecting SARS-CoV-2 infection and summarized the selection strategies of testing and sampling sites at different disease stages to improve the diagnostic accuracy of testing for the virus' associated disease, coronavirus disease 2019 (COVID-19).
Keywords: novel coronavirus, SARS-CoV-2, COVID-19, laboratory testing, laboratory diagnosis
Discussion
An outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in Wuhan, China, in December 2019. It then rapidly developed into a global pandemic. As of May 29, 2020 a total of 5,701,337 laboratory-confirmed COVID-19 cases had been reported worldwide, with 357,688 deaths confirmed. Among the effective control measures to reduce transmission in the community, early and reliable laboratory confirmation of SARS-CoV-2 infection is of crucial importance. This review summarizes the advances made in technologies for rapid diagnosis and confirmation of respiratory infections caused by SARS-CoV-2, as well as the selection strategies of testing and sampling sites in SARS-CoV-2 detection.
Since the initial cases of pneumonia of unknown cause were first reported, viral culture and genetic sequencing of isolates obtained from these patients in January 2020 identified within 10 days a novel coronavirus as the etiology. This benefitted understanding of the disease occurrence and transmission, as well as diagnostic test development.[1] Although viral culture is relatively time-consuming and labor-intensive, it is much more useful in the initial phase of emerging epidemics before other diagnostic assays are clinically available. Besides, unbiased, high-throughput sequencing has been proven as a powerful tool for discovering pathogens (Table 1). A detection assay (BGI, Shenzhen, China), based on next-generation sequencing, was approved for emergency use authorization (EUA) by the National Medical Products Administration (NMPA) in China (see Table S1 in the Supplementary data). However, whole genome sequencing is time-consuming and requires specialized instruments with high technical thresholds, and thus is not recommended for widespread clinical use.
|
References
- ↑ Zhu, N.; Zhang, D.; Wang, W. et al. (2020). "A Novel Coronavirus from Patients with Pneumonia in China, 2019". New England Journal of Medicine 382 (8): 727–33. doi:10.1056/NEJMoa2001017. PMC PMC7092803. PMID 31978945. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092803.
Notes
This presentation is faithful to the original, with only a few minor changes to presentation. Some grammar, punctuation, and repetition was cleaned up to improve readability. In some cases important information was missing from the references, and that information was added. Nothing else was changed in accordance with the NoDerivatives portion of the license.