User:Shawndouglas/Sandbox

From LIMSWiki
Jump to navigationJump to search

Sandbox begins below

Full article title Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system
Journal Applied Sciences
Author(s) Ergüzen, Atilla; Ünver, Mahmut
Author affiliation(s) Kırıkkale University
Primary contact Email: munver at kku dot edu dot tr
Year published 2018
Volume and issue 8(6)
Page(s) 913
DOI 10.3390/app8060913
ISSN 2076-3417
Distribution license Creative Commons Attribution 4.0 International
Website http://www.mdpi.com/2076-3417/8/6/913/htm
Download http://www.mdpi.com/2076-3417/8/6/913/pdf (PDF)

Abstract

Recently, the use of the internet has become widespread, increasing the use of mobile phones, tablets, computers, internet of things (IoT) devices, and other digital sources. In the healthcare sector, with the help of next generation digital medical equipment, this digital world also has tended to grow in an unpredictable way such that nearly 10 percent of global data is healthcare-related, continuing to grow beyond what other sectors have. This progress has greatly enlarged the amount of produced data which cannot be resolved with conventional methods. In this work, an efficient model for the storage of medical images using a distributed file system structure has been developed. With this work, a robust, available, scalable, and serverless solution structure has been produced, especially for storing large amounts of data in the medical field. Furthermore, the security level of the system is extreme by use of static Internet Protocol (IP) addresses, user credentials, and synchronously encrypted file contents. One of the most important key features of the system is high performance and easy scalability. In this way, the system can work with fewer hardware elements and be more robust than others that use name node architecture. According to the test results, the performance of the designed system is better than 97% from a Not Only Structured Query Language (NoSQL) system, 80% from a relational database management system (RDBMS), and 74% from an operating system (OS).

Keywords: big data, distributed file system, health data, medical imaging

Introduction

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added.