Journal:Expert search strategies: The information retrieval practices of healthcare information professionals
Full article title | Expert search strategies: The information retrieval practices of healthcare information professionals |
---|---|
Journal | JMIR Medical Informatics |
Author(s) | Russell-Rose, Tony; Chamberlain, Jon |
Author affiliation(s) | UXLabs Ltd., University of Essex |
Primary contact | Email: tgr at uxlabs dot co dot uk |
Editors | Eysenbach, G. |
Year published | 2017 |
Volume and issue | 5 (4) |
Page(s) | e33 |
DOI | 10.2196/medinform.7680 |
ISSN | 2291-9694 |
Distribution license | Creative Commons Attribution 4.0 International |
Website | http://medinform.jmir.org/2017/4/e33/ |
Download | http://medinform.jmir.org/2017/4/e33/pdf (PDF) |
This article should not be considered complete until this message box has been removed. This is a work in progress. |
Abstract
Background: Healthcare information professionals play a key role in closing the knowledge gap between medical research and clinical practice. Their work involves meticulous searching of literature databases using complex search strategies that can consist of hundreds of keywords, operators, and ontology terms. This process is prone to error and can lead to inefficiency and bias if performed incorrectly.
Objective: The aim of this study was to investigate the search behavior of healthcare information professionals, uncovering their needs, goals, and requirements for information retrieval systems.
Methods: A survey was distributed to healthcare information professionals via professional association email discussion lists. It investigated the search tasks they undertake, their techniques for search strategy formulation, their approaches to evaluating search results, and their preferred functionality for searching library-style databases. The popular literature search system PubMed was then evaluated to determine the extent to which their needs were met.
Results: The 107 respondents indicated that their information retrieval process relied on the use of complex, repeatable, and transparent search strategies. On average it took 60 minutes to formulate a search strategy, with a search task taking four hours and consisting of 15 strategy lines. Respondents reviewed a median of 175 results per search task, far more than they would ideally like (100). The most desired features of a search system were merging search queries and combining search results.
Conclusions: Healthcare information professionals routinely address some of the most challenging information retrieval problems of any profession. However, their needs are not fully supported by current literature search systems, and there is demand for improved functionality, in particular regarding the development and management of search strategies.
Keywords: review, surveys and questionnaires, search engine, information management, information systems
Introduction
Background
Medical knowledge is growing so rapidly that it is difficult for healthcare professionals to keep up. As the volume of published studies increases each year[1], the gap between research knowledge and professional practice grows.[2] Frontline healthcare providers (such as general practitioners [GPs]) responding to the immediate needs of patients may employ a web-style search for diagnostic purposes, with Google being reported to be a useful diagnostic tool[3]; however, the credibility of results depends on the domain.[4] Medical staff may also perform more in-depth searches, such as rapid evidence reviews, where a concise summary of what is known about a topic or intervention is required.[5]
Healthcare information professionals play the primary role in closing the gap between published research and medical practice, by synthesizing the complex, incomplete, and at times conflicting findings of biomedical research into a form that can readily inform healthcare decision making.[6] The systematic literature review process relies on the painstaking and meticulous searching of multiple databases using complex Boolean search strategies that often consist of hundreds of keywords, operators, and ontology terms[7] (Textbox 1).
|
Performing a systematic review is a resource-intensive and time consuming undertaking, sometimes taking years to complete.[8] It involves a lengthy content production process whose output relies heavily on the quality of the initial search strategy, particularly in ensuring that the scope is sufficiently exhaustive and that the review is not biased by easily accessible studies.[9]
Numerous studies have been performed to investigate the healthcare information retrieval process and to better understand the challenges involved in strategy development, as it has been noted that online health resources are not created by healthcare professionals.[10] For example, Grant[11] used a combination of a semi-structured questionnaire and interviews to study researchers’ experiences of searching the literature, with particular reference to the use of optimal search strategies. McGowan et al.[12] used a combination of a web-based survey and peer review forums to investigate what elements of the search process have the most impact on the overall quality of the resulting evidence base. Similarly, Gillies et al.[13] used an online survey to investigate the review, with a view to identifying problems and barriers for authors of Cochrane reviews. Ciapponi and Glujovsky[14] also used an online survey to study the early stages of systematic review.
References
- ↑ Lu, Z. (2011). "PubMed and beyond: A survey of web tools for searching biomedical literature". Database 2011: baq036. doi:10.1093/database/baq036. PMC PMC3025693. PMID 21245076. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025693.
- ↑ Bastian, H.; Glasziou, P.; Chalmers, I. (2010). "Seventy-five trials and eleven systematic reviews a day: How will we ever keep up?". PLoS Medicine 7 (9): e1000326. doi:10.1371/journal.pmed.1000326. PMC PMC2943439. PMID 20877712. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943439.
- ↑ Tang, H.; Ng, J.H. (2006). "Googling for a diagnosis--Use of Google as a diagnostic aid: Internet based study". PLoS Medicine 333 (7579): 1143-5. doi:10.1136/bmj.39003.640567.AE. PMC PMC1676146. PMID 17098763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1676146.
- ↑ Kitchens, B.; Harle, C.A.; Li, S. (22014). "Quality of health-related online search results". Decision Support Systems 57: 454-462. doi:10.1016/j.dss.2012.10.050.
- ↑ Hemingway, P.; Brereton, N. (April 2009). "What Is A Systematic Review?" (PDF). Heyward Medical Communications. http://www.bandolier.org.uk/painres/download/whatis/Syst-review.pdf. Retrieved 05 March 2017.
- ↑ Elliott, J.H.; Turner, T. (2006). "Living systematic reviews: An emerging opportunity to narrow the evidence-practice gap". PLoS Medicine 333 (7579): 1143-5. doi:10.1136/bmj.39003.640567.AE. PMC PMC1676146. PMID 17098763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1676146.
- ↑ Karimi, S.; Pohl, S.; Scholer, F. et al. (2010). "Boolean versus ranked querying for biomedical systematic reviews". BMC Medical Informatics and Decision Making 10: 58. doi:10.1186/1472-6947-10-58. PMC PMC2966450. PMID 20937152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966450.
- ↑ Higgins, J.P.T.; Green, S., ed. (2011). "Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0". The Cochrane Collaboration. http://training.cochrane.org/handbook. Retrieved 05 March 2017.
- ↑ Tsafnat, G.; Glasziou, P.; Choong, M.K. et al. (2014). "Systematic review automation technologies". Systematic Reviews 3: 74. doi:10.1186/2046-4053-3-74. PMC PMC4100748. PMID 25005128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100748.
- ↑ Potts, H.W. (2006). "Is e-health progressing faster than e-health researchers?". Journal of Medical Internet Research 8 (3): e24. doi:10.2196/jmir.8.3.e24. PMC PMC2018835. PMID 17032640. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2018835.
- ↑ Grant, M.J. (2004). "How does your searching grow? A survey of search preferences and the use of optimal search strategies in the identification of qualitative research". Health Information and Libraries Journal 21 (1): 21–32. doi:10.1111/j.1471-1842.2004.00483.x. PMID 15023206.
- ↑ McGowan, J.; Sampson, M.; Salzwedel, D.M. et al. (2016). "PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement". Journal of Clinical Epidemiology 75: 40–6. doi:10.1016/j.jclinepi.2016.01.021. PMID 27005575.
- ↑ Gillies, D.; Maxwell, H.; New, K. et al. (2008). "A collaboration-wide survey of Cochrane authors". Evidence in the Era of Globalisation: Abstracts of the 16th Cochrane Colloquium 2008: 04–33.
- ↑ Ciapponi, A.; Glujovsky, D. (2012). "Survey among Cochrane authors about early stages of systematic reviews". 20th Cochrane Colloquium 2012. http://2012.colloquium.cochrane.org/abstracts/survey-among-cochrane-authors-about-early-stages-systematic-reviews.html.
Notes
This presentation is faithful to the original, with only a few minor changes to presentation. In several cases the PubMed ID was missing and was added to make the reference more useful. Grammar and vocabulary were cleaned up to make the article easier to read.
Per the distribution agreement, the following copyright information is also being added:
©Tony Russell-Rose, Jon Chamberlain. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.10.2017.