Journal:Energy informatics: Fundamentals and standardization

From LIMSWiki
Revision as of 19:56, 18 September 2017 by Shawndouglas (talk | contribs) (Created stub. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title Energy informatics: Fundamentals and standardization
Journal ICT Express
Author(s) Huang, Biyao; Bai, Xiaomin; Zhou, Zhenyu; Cui,Quansheng; Zhu, Daohua; Hu, Ruwei
Author affiliation(s) China Electric Power Research Institute, Global Energy Interconnection Research Institute,
North China Electric Power University, State Grid Jiangsu Electric Power Research Institute
Primary contact Email: huangby at geiri dot sgcc dot com dot cn
Year published 2017
Volume and issue 3 (2)
Page(s) 76–80
DOI 10.1016/j.icte.2017.05.006
ISSN 2405-9595
Distribution license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Website http://www.sciencedirect.com/science/article/pii/S2405959517300619
Download http://www.sciencedirect.com/science/article/pii/S2405959517300619/pdfft (PDF)

Abstract

Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy systems, and the convergence of energy systems and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

Keywords: Smart energy, ICT, Energy informatics

Introduction

With the changing of global climate and a world energy shortage, a smooth transition from conventional fossil fuel-based energy supplies to renewable energy sources is critical for the sustainable development of human society. Meanwhile, the energy domain is experiencing a paradigmatic change by integrating conventional energy systems with advanced information and communication technologies (ICT), which poses new challenges to the efficient operation and design of energy systems.

From a technical perspective, with the purpose of supplying end-users with energy service comes the design of energy systems.[1] From a structural point of view, all of the components in an energy system have connections with production, transition, delivery, and energy usage.[2] From the view of socioeconomics, an energy system includes energy markets and they treat it as a technical and economic system to satisfy consumers’ demand for energy in forms of heat, fuels, and electricity. Moreover, an energy system is subject to various influences, for instance, business models, markets, regulations, customer behavior and the natural environment. These definitions are related to information from a system (or system of systems) point-of-view.

References

  1. Groscurth, H.-M.; Bruckner, Th.; Kümmel, R. (1995). "Modeling of energy-services supply systems". Energy 20 (9): 941–958. doi:10.1016/0360-5442(95)00067-Q. 
  2. Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y. et al., ed. (2014). Climate Change 2014: Mitigation of Climate Change. Cambridge University Press. pp. 1249-1279. ISBN 9781107654815. http://www.ipcc.ch/report/ar5/wg3/. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. Grammar and spelling were updated for readability and should not constitute "sufficient new creativity to be copyrightable"; no other modifications were made in accordance with the "no derivatives" portion of the distribution license.