Clinical decision support system

From LIMSWiki
Revision as of 21:06, 20 June 2015 by Shawndouglas (talk | contribs) (Added. Saving and will update later.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

A clinical decision support system (CDSS) is a "computer [system] designed to impact clinician decision making about individual patients at the point in time these decisions are made."[1] As such, it can be viewed as a knowledge management tool used to further clinical advice for patient care based on multiple items of patient data.

Characteristics

Purpose

In the early days, CDSSs were conceived of as being used to literally make decisions for the clinician. The clinician would input the information and wait for the CDSS to output the "right" choice, and the clinician would simply act on that output. In April 1963, a forward-looking doctor Roger Truesdail imagined a future 1985 where such a process would be a reality:

The year is 1985 when a middle-aged man enters a physician's office, suffering from a critical ailment. The doctor feeds into a small electronic computer the patient's symptoms, medical history, and other pertinent data. The computer transmits the information to a giant central electronic computer in a remote city. Seconds later the computer will transmit back to the doctor the combined medical diagnosis of the world's best medical minds. The man is given the proper treatment and his life is saved. The very latest medical information, often inaccessible to doctors, will be stored in the giant computer. This computer, linked with small computers in doctors' offices and hospitals all over the world, will place vital medical information at doctor's fingertips.[2]

However, the modern methodology involves the clinician interacting with the CDSS at the point of care, utilizing both their own knowledge and the CDSS to produce the best diagnosis from the test data. Typically, a CDSS suggests avenues for the physician to explore, and the physician is expected to use their own knowledge and judgement to narrow down possibilities.

Types of CDSS

CDSSs can be roughly divided into two types: those with knowledge-bases and those without. The knowledge-based approach typically covers the diagnosis of many different diseases, while the non-knowledge-based approach often focuses on a narrow list of symptoms, such as symptoms for a single disease.

Knowledge-based CDSS

Most CDSSs contain a knowledge base as well as an inference engine and a mechanism to communicate. The knowledge base contains the rules and associations of compiled data, which most often take the form of IF-THEN rules. If this were a system for determining drug interactions, for example, then a rule might be that IF drug X is taken AND drug Y is taken, THEN alert the user. Using another interface, an advanced user can update the knowledge base with new drug information. The inference engine combines the rules from the knowledge base with the patient's data, while the communication mechanism allows the system to show the results and allow user input into the system.[1]

Non-knowledge-based CDSS

CDSSs that do not use a knowledge base use a form of artificial intelligence called machine learning, which allow computers to learn from past experiences and/or find patterns in clinical data. This eliminates the need for writing rules and for expert input.[3] However, since systems based on machine learning cannot explain the reasons for their conclusions (neural networks and other machine learning systems are often referred to as "black boxes" because no meaningful information about how they work can be discerned by human inspection[4]), most clinicians do not use them directly for diagnoses due to reliability and accountability reasons.[1] Nevertheless, they can be useful as post-diagnostic systems that suggest data patterns for further investigation.

Two of the major types of non-knowledge-based systems are artificial neural networks and genetic algorithms. Artificial neural networks use nodes and weighted connections between them to analyze the patterns found in patient data to derive associations between symptoms and a diagnosis. Genetic algorithms are based on simplified evolutionary processes using directed selection to achieve optimal CDSS results. The selection algorithms evaluate components of random sets of solutions to a problem. The solutions that come out on top are then recombined and mutated and run through the process again. This happens over and over until the proper solution is discovered. They are functionally similar to neural networks in that they are also "black boxes" that attempt to derive knowledge from patient data.[5][1]

Regulations

United States

With the enactment of the American Recovery and Reinvestment Act of 2009 (ARRA), the U.S. government and medical professionals alike have been pushing for greater widespread adoption of health information technology. As such, more hospitals and clinics are integrating electronic health records (EHRs) and computerized physician order entry (CPOE) systems within their infrastructure. In fact, the National Academy of Sciences' Institute of Medicine had been actively promoting the use of health information technology — including the CDSS — to advance quality of patient care well before the ARRA was even enacted.[6]

Currently there are "no national standards for the specific evidence-based guidelines orrules that should be built into CDS[6]," though standards organizations like Health Level Seven and its Clinical Decision Support Work Group continue to make headway on this front.[7] Despite the absence of laws, several CDSS vendors have expressed both a desire to work together to provide a useful product to improve health outcomes and a need to express neutrality liability wise, stating

...[t]he ultimate end user is responsible for how it influences patient care. This neutral stance on the part of the content vendors is also due to the legal situation. Some content vendor representatives spoke strongly about how the legal system in this country influences what they can provide. There are many legal, regulatory, antitrust, and fiduciary constraints that content vendors must navigate while still providing a useful and usable product for all their customers. Sometimes, depending on what is being sold, these constraints result in sub-optimal products for clinician end-users.[8]

Effectiveness

The evidence of the effectiveness of CDSS is mixed. A 2014 systematic review did not find a benefit in terms of risk of death when the CDSS was combined with the electronic health record.[9] There may be some benefits, however, in terms of other outcomes.[9]

A 2005 systematic review concluded that CDSSs improved practitioner performance in 64% of the studies. The CDSSs improved patient outcomes in 13% of the studies. Sustainable CDSSs features associated with improved practitioner performance include the following:

  • automatic electronic prompts rather than requiring user activation of the system

Both the number and the methodological quality of studies of CDSSs increased from 1973 through 2004.[10]

Another 2005 systematic review found... "Decision support systems significantly improved clinical practice in 68% of trials." The CDSS features associated with success include the following:[11]

  • the CDSS is integrated into the clinical workflow rather than as a separate log-in or screen.
  • the CDSS is electronic rather than paper-based templates.
  • the CDSS provides decision support at the time and location of care rather than prior to or after the patient encounter.
  • the CDSS provides (active voice) recommendations for care, not just assessments.

However, other systematic reviews are less optimistic about the effects of CDS, with one from 2011 stating "There is a large gap between the postulated and empirically demonstrated benefits of [CDSS and other] eHealth technologies ... their cost-effectiveness has yet to be demonstrated".[12]

Challenges to Adoption

With recent effective legislations related to performance shift payment incentives, CDSS are becoming more attractive.[citation needed][clarification needed]

Clinical Challenges

Much effort has been put forth by many medical institutions and software companies to produce viable CDSSs to support all aspects of clinical tasks. However, with the complexity of clinical workflows and the demands on staff time high, care must be taken by the institution deploying the support system to ensure that the system becomes a fluid and integral part of the clinical workflow. Some CDSSs have met with varying amounts of success, while others have suffered from common problems preventing or reducing successful adoption and acceptance.

Two sectors of the healthcare domain in which CDSSs have had a large impact are the pharmacy and billing sectors. There are commonly used pharmacy and prescription ordering systems that now perform batch-based checking of orders for negative drug interactions and report warnings to the ordering professional. Another sector of success for CDSS is in billing and claims filing. Since many hospitals rely on Medicare reimbursements to stay in operation, systems have been created to help examine both a proposed treatment plan and the current rules of Medicare in order to suggest a plan that attempts to address both the care of the patient and the financial needs of the institution.

Other CDSSs that are aimed at diagnostic tasks have found success, but are often very limited in deployment and scope. The Leeds Abdominal Pain System went operational in 1971 for the University of Leeds hospital, and was reported to have produced a correct diagnosis in 91.8% of cases, compared to the clinicians’ success rate of 79.6%.[citation needed]

Despite the wide range of efforts by institutions to produce and use these systems, widespread adoption and acceptance has still not yet been achieved for most offerings. One large roadblock to acceptance has historically been workflow integration. A tendency to focus only on the functional decision making core of the CDSS existed, causing a deficiency in planning for how the clinician will actually use the product in situ. Often CDSSs were stand-alone applications, requiring the clinician to cease working on their current system, switch to the CDSS, input the necessary data (even if it had already been inputted into another system), and examine the results produced. The additional steps break the flow from the clinician’s perspective and cost precious time.

Technical Challenges & Barriers to Implementation

Clinical decision support systems face steep technical challenges in a number of areas. Biological systems are profoundly complicated, and a clinical decision may utilize an enormous range of potentially relevant data. For example, an electronic evidence-based medicine system may potentially consider a patient’s symptoms, medical history, family history and genetics, as well as historical and geographical trends of disease occurrence, and published clinical data on medicinal effectiveness when recommending a patient’s course of treatment.

Clinically, a large deterrent to CDSS acceptance is workflow integration, as mentioned above.

Another source of contention with many medical support systems is that they produce a massive number of alerts. When systems produce high volume of warnings (especially those that do not require escalation), aside from the annoyance, clinicians may pay less attention to warnings, causing potentially critical alerts to be missed.

Maintenance

One of the core challenges facing CDSS is difficulty in incorporating the extensive quantity of clinical research being published on an ongoing basis. In a given year, tens of thousands of clinical trials are published.[13] Currently, each one of these studies must be manually read, evaluated for scientific legitimacy, and incorporated into the CDSS in an accurate way. In 2004, it was stated that the process of gathering clinical data and medical knowledge and putting them into a form that computers can manipulate to assist in clinical decision-support is "still in its infancy".[14]

Nevertheless, it is more feasible for a business to do this centrally, even if incompletely, than for each individual doctor to try to keep up with all the research being published.

In addition to being laborious, integration of new data can sometimes be difficult to quantify or incorporate into the existing decision support schema, particularly in instances where different clinical papers may appear conflicting. Properly resolving these sorts of discrepancies is often the subject of clinical papers itself (see meta-analysis), which often take months to complete.

Evaluation

In order for a CDSS to offer value, it must demonstrably improve clinical workflow or outcome. Evaluation of CDSS is the process of quantifying its value to improve a system’s quality and measure its effectiveness. Because different CDSSs serve different purposes, there is no generic metric which applies to all such systems; however, attributes such as consistency (with itself, and with experts) often apply across a wide spectrum of systems.[15]

The evaluation benchmark for a CDSS depends on the system’s goal: for example, a diagnostic decision support system may be rated based upon the consistency and accuracy of its classification of disease (as compared to physicians or other decision support systems). An evidence-based medicine system might be rated based upon a high incidence of patient improvement, or higher financial reimbursement for care providers.

Combining CDSS with Electronic Health Records

Implementing Electronic Health Records (EHR) was an inevitable challenge. The reasons behind this challenge are that it is a relatively uncharted area, and there are many issues and complications during the implementation phase of an EHR. This can be seen in the numerous studies that have been undertaken.[citation needed] However, challenges in implementing electronic health records (EHRs) have received some attention, but less is known about the process of transitioning from legacy EHRs to newer systems.[16]

With all of that said, electronic health records are the way of the future for healthcare industry. They are a way to capture and utilise real-time data to provide high-quality patient care, ensuring efficiency and effective use of time and resources. Incorporating EHR and CDSS together into the process of medicine has the potential to change the way medicine has been taught and practiced.[17] It has been said that “the highest level of EHR is a CDSS”.[18]

Since “clinical decision support systems (CDSS) are computer systems designed to impact clinician decision making about individual patients at the point in time that these decisions are made”,[17] it is clear that it would be beneficial to have a fully integrated CDSS and EHR.

Even though the benefits can be seen, to fully implement a CDSS that is integrated with an EHR has historically required significant planning by the healthcare facility/organisation, in order for the purpose of the CDSS to be successful and effective. The success and effectiveness can be measured by the increase in patient care being delivered and reduced adverse events occurring. In addition to this, there would be a saving of time and resources, and benefits in terms of autonomy and financial benefits to the healthcare facility/organisation.[19]

Benefits of CDSS combined with EHR

A successful CDSS/EHR integration will allow the provision of best practice, high quality care to the patient, which is the ultimate goal of healthcare.

Errors have always occurred in healthcare, so trying to minimise them as much as possible is important in order to provide quality patient care. Three areas that can be addressed with the implementation of CDSS and Electronic Health Records (EHRs), are:

  1. Medication prescription errors
  2. Adverse drug events
  3. Other medical errors

CDSSs will be most beneficial in the future when healthcare facilities are "100% electronic" in terms of real-time patient information, thus simplifying the number of modifications that have to occur to ensure that all the systems are up to date with each other.

The measurable benefits of clinical decision support systems on physician performance and patient outcomes remain the subject of ongoing research, as noted in the "Effectiveness" section above.

Barriers to CDSS combined with EHR

Implementing electronic health records (EHR) in healthcare settings incurs challenges; none more important than maintaining efficiency and safety during rollout,[20] but in order for the implementation process to be effective, an understanding of the EHR users’ perspectives is key to the success of EHR implementation projects.[21] In addition to this, adoption needs to be actively fostered through a bottom-up, clinical-needs-first approach.[22] The same can be said for CDSS.

The main areas of concern with moving into a fully integrated EHR/CDSS system are:

1. Privacy
2. Confidentiality
3. User-friendliness
4. Document accuracy and completeness
5. Integration
6. Uniformity
7. Acceptance
8. Alert desensitisation

[23] as well as the key aspects of data entry that need to be addressed when implementing a CDSS to avoid potential adverse events from occurring. These aspects include whether:

  • correct data is being used
  • all the data has been entered into the system
  • current best practice is being followed
  • the data is evidence-based[clarification needed]

A Service oriented architecture has been proposed as a technical means to address some of these barriers.[24]

Status in Australia

Template:Outdated section At the current[when?] stage of progress with EHR especially in Australia, the majority of healthcare facilities are still running completely paper-based systems, and some are in the transition phase of a form of EHR with either already implemented scanned-EHRs or are in the process of transitioning to using scanned EHRs.

Victoria has attempted to implement EHR across the state with its HealthSMART program, but due to financial costs it has cancelled the project.[25]

South Australia (SA) however is slightly more successful than Victoria in the implementation of an EHR. This may be due to all public healthcare organisations in SA being centrally run. (However, on the other hand, the UK's National Health Service is also centrally administered, and its National Programme for IT in the 2000s, which included EHRs in its remit, was an expensive disaster.)

SA is in the process of implementing “Enterprise patient administration system (EPAS)”. This system is the foundation for all public hospitals and health care sites for an EHR within SA and it was expected that by the end of 2014 all facilities in SA will be connected to it. This would allow for successful integration of CDSS into SA and increase the benefits of the EHR.[26]

Further reading



See also

References

  1. 1.0 1.1 1.2 1.3 Berner, Eta S. (ed.) (2007). Clinical Decision Support Systems: Theory and Practice (2nd ed.). Springer Science & Business Media. pp. 270. ISBN 9780387383194. https://books.google.com/books?id=t4laP7U4a-AC&pg=PA3. Retrieved 19 June 2015. 
  2. Truesdail, Roger (April 1963). "Peeps at Things to Come". The Rotarian 102 (4). https://books.google.com/books?id=EjcEAAAAMBAJ&pg=PA54. Retrieved 19 June 2015. 
  3. Syeda-Mahmood, Tanveer (March 2015). "Tanveer Syeda-Mahmood plenary talk: The Role of Machine Learning in Clinical Decision Support". SPIE Newsroom. doi:10.1117/2.3201503.29. http://spie.org/x112958.xml. Retrieved 20 June 2015. 
  4. Twain, Jack (14 April 2014). "Meaning of a neural network as a black-box?". Cross Validated. Stack Exchange, Inc. http://stats.stackexchange.com/questions/93705/meaning-of-a-neural-network-as-a-black-box. Retrieved 20 June 2015. 
  5. Wagholikar, Kavishwar; Sundararajan, V.; Deshpande, Ashok (October 2012). "Modeling Paradigms for Medical Diagnostic Decision Support: A Survey and Future Directions". Journal of Medical Systems 35 (5): 3029–49. doi:10.1007/s10916-011-9780-4. PMID 21964969. http://www.ncbi.nlm.nih.gov/pubmed/21964969. Retrieved 20 June 2015. 
  6. 6.0 6.1 Berner, Ets S. (June 2009). "Clinical Decision Support Systems: State of the Art" (PDF). Agency for Healthcare Research and Quality. pp. 26. http://healthit.ahrq.gov/sites/default/files/docs/page/09-0069-EF_1.pdf. Retrieved 20 June 2015. 
  7. "Clinical Decision Support". Health Level Seven International. 2015. http://www.hl7.org/Special/committees/dss/index.cfm. Retrieved 20 June 2015. 
  8. Ash, Joan S. et al. (2011). "Studying the Vendor Perspective on Clinical Decision Support". AMIA Annual Symposium Proceedings Archive 2011: 80–87. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243293/. Retrieved 20 June 2015. 
  9. 9.0 9.1 Moja, L; Kwag, KH; Lytras, T; Bertizzolo, L; Brandt, L; Pecoraro, V; Rigon, G; Vaona, A et al. (December 2014). "Effectiveness of computerized decision support systems linked to electronic health records: a systematic review and meta-analysis.". American journal of public health 104 (12): e12-22. doi:10.2105/ajph.2014.302164. PMID 25322302. 
  10. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J (2005). "Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review.". JAMA 293 (10): 1223–38. doi:10.1001/jama.293.10.1223. PMID 15755945. http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&retmode=ref&cmd=prlinks&id=15755945. 
  11. Kensaku Kawamoto, Caitlin A Houlihan, E Andrew Balas, David F Lobach. (2005). "Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success.". BMJ 330 (7494): 765. doi:10.1136/bmj.38398.500764.8F. PMC 555881. PMID 15767266. http://www.bmj.com/content/330/7494/765.full.pdf+html. 
  12. Black, A.D., J. Car, C. Pagliari, C. Anandan, K. Cresswell, T. Bokun, B. McKinstry, R. Procter, A. Majeed, and A. Sheikh. (2011). "The impact of ehealth on the quality and safety of health care: A systematic overview.". PLoS Medicine 8 (1). doi:10.1371/journal.pmed.1000387. http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1000387. 
  13. Gluud C, Nikolova D (2007). "Likely country of origin in publications on randomised controlled trials and controlled clinical trials during the last 60 years.". Trials 8: 7. doi:10.1186/1745-6215-8-7. PMC 1808475. PMID 17326823. http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=clinical.uthscsa.edu/cite&retmode=ref&cmd=prlinks&id=17326823. 
  14. Gardner, Reed M (April 2004). "Computerized Clinical Decision-Support in Respiratory Care". Respiratory Care 49: 378–388. 
  15. Wagholikar, K; Kathy L. MacLaughlin; Thomas M Kastner; Petra M Casey; Michael Henry; Robert A Greenes; Hongfang Liu; Rajeev Chaudhry (2013). "Formative evaluation of the accuracy of a clinical decision support system for cervical cancer screening". Journal of American Medical Informatics Association. pp. 747–759. http://dx.doi.org/10.1136/amiajnl-2013-001613. Retrieved 6 March 2013. 
  16. Zandieh, Stephanie O.; Kahyun Yoon-Flannery; Gilad J. Kuperman; Daniel J. Langsam; Daniel Hyman; Rainu Kaushal (2008). "Challenges to EHR Implementation in Electronic- Versus Paper-based Office Practices". Journal of Global Information Management: 755–761. 
  17. 17.0 17.1 Berner, Eta S.; Tonya J.La Lande (2007). "1". Clinical Decision Support Systems: Theory and Practice (2 ed.). New York: Springer Science and Business Media. pp. 3–22. 
  18. Rothman, Brian; Joan. C. Leonard; Michael. M. Vigoda (2012). "Future of electronic health records: implications for decision support". Mount Sinai Journal of Medicine 79 (6): 757–768. doi:10.1002/msj.21351. 
  19. Sambasivan, Murali; Pouyan Esmaeilzadeh; Naresh Kumar and Hossein Nezakati (2012). "Intention to adopt clinical decision support systems in a developing country: effect of Physician’s perceived professional autonomy, involvement and belief: a cross-sectional study". BMC Medical Informatics and Decision Making 12: 142–150. doi:10.1186/1472-6947-12-142. 
  20. Spellman Kennebeck, Stephanie; Nathan Timm; Michael K Farrell; S Andrew Spooner (2012). "Impact of electronic health record implementation on patient flow metrics in a pediatric emergency department". Journal of the American Medical Informatics Association: 443–447. 
  21. McGinn, Carrie A; Marie-Pierre Gagnon, Nicola Shaw, Claude Sicotte, Luc Mathieu, Yvan Leduc, Sonya Grenier, Julie Duplantie, Anis B Abdeljelil and France Légaré (2012). "Users' perspectives of key factors to implementing electronic health records in Canada: a Delphi study". BMC Medical Informatics & Decision Making 12: 105–118. doi:10.1186/1472-6947-12-105. 
  22. Rozenblum, Ronen; Yeona Jang; Eyal Zimlichman; Claudia Salzberg; Melissa Tamblyn; David Buckeridge; Alan Forster; David W. Bates and Robyn Tamblyn (2011). "A qualitative study of Canada's experience with the implementation of electronic health information technology". Canadian Medical Association Journal: 281–288. 
  23. Berner, Eta S.; Tonya J.La Lande (2007). "4". Clinical Decision Support Systems: Theory and Practice (2 ed.). New York: Springer Science and Business Media. pp. 64–98. 
  24. PMID 25325996 (PubMed)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  25. Charette, Robert N.. "Troubled HealthSMART System Finally Cancelled in Victoria Australia". http://spectrum.ieee.org/riskfactor/computing/it/troubled-healthsmart-system-finally-cancelled-in-victoria-australia-. Retrieved 18 May 2013. 
  26. South Australian Health. "EPAS program update". South Australian Health. http://www.sahealth.sa.gov.au/wps/wcm/connect/public+content/sa+health+internet/health+reform/ehealth/enterprise+patient+administration+system/epas+program+update. Retrieved 15 May 2013. 

External links