Picture archiving and communication system

From LIMSWiki
Revision as of 22:03, 9 June 2014 by Shawndouglas (talk | contribs) (Created as needed. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
This image demonstrates a basic set of interconnections among a PACS, a radiology information system (RIS), the imaging modalities, and other components of the PACS, standardized by DICOM.

A picture archiving and communication system (PACS) is a digital imaging system composed of a set of components that allow for the digital acquisition, archiving, communication, retrieval, processing, distribution, and display of medical images.[1] The PACS may consist of only a few components or be sufficiently complex to handle a hospital or healthcare enterprise environment. Regardless, it must be durable enough for daily use in a clinical environment, integrate to and from several medical imaging modalities, and have sufficient workstations for technicians utilizing those modalities to perform their work inside and outside the radiology department.[1] PACS benefit healthcare providers by digitally managing medical images, eliminating the need to manually file, retrieve, or transport film jackets. This often saves processing time in both the diagnostics and reporting related to the imagery, especially when integrated with speech recognition technology.[2]

History

Technology

A quality PACS design depends on system connectivity and workflow efficiency. It features a standardized, open architecture and is expandable for future growth. Hardware includes imaging device interfaces, storage devices, communication networks, patient data servers, display tools, and imaging modalities "integrated by a standardized, flexible software system for communication, database management, storage management, job scheduling, interprocessor communication, error handling, and network monitoring."[1] Other components that necessarily integrate to the PACS include a radiology information system (RIS) and a hospital information system (HIS), extending its effectiveness even further. All of these components "talk" to each other in no small part because of the DICOM (Digital Imaging and Communications in Medicine) standard which ensures a uniform handling, storing, printing, and transmitting of medical imaging data.[1][3]

This interfacing between multiple systems provides more consistent and reliable data by reducing the risk of entering incorrect patient information (through QA and error checking) and by strengthening merged datasets across multiple systems by using a unique, transferable ID like an NHS or Social Security number. Analysis and reporting also becomes more integrated and rapid across the entire provider-patient pipeline.[3]

References

  1. 1.0 1.1 1.2 1.3 Huang, H. K. (2010). "Chapter 1: Introduction". PACS and Imaging Informatics: Basic Principles and Applications. John Wiley & Sons. pp. 1–30. ISBN 9780470560518. http://books.google.com/books?id=Pjjkyae_55oC&pg=PA1. Retrieved 09 June 2014. 
  2. Fox, Matthew A.; Aschkenasi, Carl J.; Kalyanpur, Arjun (2013). "Voice recognition is here comma like it or not period". Indian Journal of Radiology and Imaging 23 (3): 191–194. doi:10.4103/0971-3026.120252. PMID 24347844. http://www.ijri.org/article.asp?issn=0971-3026;year=2013;volume=23;issue=3;spage=191;epage=194;aulast=Fox. Retrieved 09 June 2014. 
  3. 3.0 3.1 Ralston, Matthew D.; Coleman, Robert M. (2009). "Chapter 3: Introduction to PACS". Practical Imaging Informatics: Foundations and Applications for PACS Professionals. Springer. pp. 33–48. ISBN 9781441904850. http://books.google.com/books?id=Q6Hc0oMyiYYC&pg=PA33. Retrieved 09 June 2014.