Journal:The NOMAD Artificial Intelligence Toolkit: Turning materials science data into knowledge and understanding

From LIMSWiki
Revision as of 19:31, 20 November 2023 by Shawndouglas (talk | contribs) (Created stub. Saving and adding more.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Full article title The NOMAD Artificial Intelligence Toolkit: Turning materials science data into knowledge and understanding
Journal npj Computational Materials
Author(s) Sbailò, Luigi; Fekete, Ádám; Ghiringhelli, Luca M.; Scheffler, Matthias
Author affiliation(s) Humboldt-Universität zu Berlin, Max-Planck-Gesellschaft
Primary contact Email: ghiringhelli at fhi dash berlin dot mpg dot de
Year published 2022
Volume and issue 8
Article # 250
DOI 10.1038/s41524-022-00935-z
ISSN 2057-3960
Distribution license Creative Commons Attribution 4.0 International
Website https://www.nature.com/articles/s41524-022-00935-z
Download https://www.nature.com/articles/s41524-022-00935-z.pdf (PDF)

Abstract

We present the Novel Materials Discovery (NOMAD) Artificial Intelligence (AI) Toolkit, a web-browser-based infrastructure for the interactive AI-based analysis of materials science data under FAIR (findable, accessible, interoperable, and reusable) data principles. The AI Toolkit readily operates on FAIR data stored in the central server of the NOMAD Archive, the largest database of materials science data worldwide, as well as locally stored, user-owned data. The NOMAD Oasis, a local, stand-alone server can also be used to run the AI Toolkit. By using Jupyter Notebooks that run in a web-browser, the NOMAD data can be queried and accessed; data mining, machine learning (ML), and other AI techniques can then be applied to analyze them. This infrastructure brings the concept of reproducibility in materials science to the next level by allowing researchers to share not only the data contributing to their scientific publications, but also all the developed methods and analytics tools. Besides reproducing published results, users of the NOMAD AI Toolkit can modify Jupyter Notebooks toward their own research work.

Keywords: computational methods, theory and computation, artificial intelligence, materials science, FAIR principles

Introduction

References

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added.