User:Shawndouglas/sandbox/sublevel6
A framework for the laboratories in our lives
Below (Fig. 1) is a diagrammatic expression of one method of organizing laboratories of the world. The idea behind the framework is that you could name a specific laboratory and be able to put it somewhere within the framework. For example:
- The U.S. Federal Bureau of Investigation's mobile forensics laboratory[1] would fall under Government > Public > Compliance and Legal > Wet (or Dry) > Mobile.
- An engineering design laboratory based within a for-profit car manufacturing company would fall under Private > Internal Customer > Research / Design > Dry > Fixed.
- A chemistry laboratory housed in a secondary school in Germany would fall under Academic > Teaching > Secondary > Wet > Fixed.
|
The original inspiration for this diagram came from Jain and Rao's attempt to diagram Indian diagnostic laboratories in 2015.[2] While their diagram focused entirely on the clinical sphere of laboratories, it was easy to envision expanding upon their work to express laboratories of all types. Additional inspiration came from KlingStubbins architecture textbook Sustainable Design of Research Laboratories: Planning, Design, and Operation[3], which lists several methods for organizing types of laboratories; Daniel D. Watch's Building Type Basics for Research Laboratories[4]; and Walter Hain's Laboratories: A Briefing and Design Guide.[5]
The benefit of this diagrammatic approach — with client type at its base — becomes more apparent when we start considering the other two methods we could use to categorize laboratories, as described by KlingStubbins et al.: by science and by function. Organizing by science quickly becomes problematic, emphasizes KlingStubbins[3]:
Gone are the days when the division was as simple as biology and chemistry. New science fields emerge rapidly now and the lines between the sciences are blurred. A list based on science types would include not just biology and chemistry, but biochemistry, biophysics, electronics, electrophysiology, genetics, metrology, nanotechnology, pharmacokinetics, pharmacology, physics, and so on.
As for function, we can look at what type of activity is primary to the lab. Is it designed to teach students, function as a base for research, provide quality control functions, calibrate equipment, or act as a routine analytical station? Another benefit of looking at labs by function is it helps with our organization of labs within industry (discussed in the next section) by what they do. For example, we don't have a "manufacturing lab"; rather, we have a laboratory in a manufacturing company — perhaps making cosmetics — that serves a particular function, whether its quality control or research and development. This line of thinking has utility, but upon closer inspection, we discover that we need to look further up the chain at who's running it.
As such, we realize these functions can be integrated with client type to provide a more complete framework. Why? When we look at laboratories by science type — particularly when inspecting newer fields of science — we realize 1. they are often interdisciplinary (e.g., molecular diagnostics integrating molecular biology with clinical chemistry) and 2. they can serve two different functions within the same science (e.g., a diagnostic cytopathology lab vs. a teaching cytopathology lab). Rather than build a massively complex chart of science types, with numerous intersections and tangled webs, it seems more straightforward to look at laboratories by client type and then function, following from the architectural viewpoints presented by KlingStubbins et al.
However, this doesn't mean looking at laboratories by science is entirely fruitless. But rather than focus directly on the sciences, why not look at the industries employing laboratory science? While there is crossover between industries (e.g., the cosmetic and petrochemical industries both lean on various chemical sciences), we can extend from the previous diagram (or work in parallel with it) and paint a broader picture of just how prevalent laboratories are in our life.
In the next section, we look at the private, government, and academic labs in various industries; provide real-life examples; and discuss the various subdivisions (functions) and sciences performed in them.
Labs by industry
Note: This is not a thorough listing of industry categories. More will be added when necessary.
Agriculture and forestry
Laboratories within the agriculture and forestry field are focused on analyzing, improving, and ensuring the safety of the various plants, animals, and fungi that are cultivated or bred to sustain and enhance human life. These labs are found in the private, government, and academic sectors and provide many different services, including:
- analysis and assessment of seeds and soils[6]
- analysis and assessment of fertilizers and pesticides[6]
- studies of farm and field systems[6]
- studies of plant and feedstock nutrition[7]
- analysis and assessment of plant and tree fibers and chemicals[8]
- tracking and analysis of plant and tree diseases[9]
- tracking and analysis of invasive plants and insects[9]
- risk assessment of genetically modified organisms (GMO) and microorganisms[10]
- tracking and analysis of agricultural animal disease[11]
How do agriculture and forestry laboratories intersect the average person's life on a daily basis? The most obvious way these labs touch our lives on a daily basis is through the food and beverages we consume. Though we talk about the food and beverage industry and its laboratories separately in this guide, agriculture labs are at the forefront of humanity's push to provide greater, more efficient, healthy, and safe agricultural yields. Ag lab personnel work to better feed humans and animals alike, while also considering the environmental impact of research-based advances in fertilizers, pesticides, and GMOs. Without these laboratories in place, we would surely face an even more dire future of struggling to maintain crop yields in a world of increasing population and decreasing natural resources.[12]
Client types
Private - Agriculture labs in the private sector typically serve as third-party or contract laboratories to other entities conducting agricultural activities while unable or unwilling to invest in their own private laboratory. Aside from analytical services, these labs often include consulting services on plant nutrition, soil sciences, and water management.
Examples include:
Government - Government-run agriculture and forestry laboratories conduct specialized topical research, provide analytical services, and oversee federal, state, and local programs in the industry. From bee research to interstate milk shipping program service to compliance testing, these public or public-private labs may act as major research hubs or checkpoints of regulated testing.
Examples include:
- Oregon Department of Agriculture Lab Services Program
- U.S. Department of Agriculture National Laboratory for Agriculture and The Environment
- Wyoming Department of Agriculture Analytical Services Lab
Academic - Agriculture laboratories associated with higher education institutions are often of a hybrid client type and function. They may multi-purpose a laboratory for research, teaching, and analytical testing purposes. Many higher-education agriculture labs also process samples from external third-party clients, acting in some ways like a private analytical lab would. In some cases, non-profit and private entities partner with higher education (public-private) to provide research and training opportunities beneficial to both the entities and the students. (See for example the Cornell-affiliated non-profit Hudson Valley Research Laboratory.[13])
Examples include:
- Clemson University Agricultural Service Laboratory
- Penn State Agricultural Analytical Services Laboratory
- University of Nebraska-Lincoln High Plains Ag Lab
Functions
What are the most common functions? Analytical, research/design, QA/QC, and teaching
What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? animal tissue, compost, feed and forage, fertilizers, insects, irrigation water, manure, pesticides, plant tissue, seeds, soil
What sciences are being applied in these labs? agroecology, agronomy, agrophysics, animal science, biological engineering, biology, biotechnology, chemistry, environmental science, food science, microbiology, nematology, soil science, water management
What are some examples of test types and equipment?
Common test types include:
Absorption, Acute contact, Acute oral, Acute toxicity, Allergy, Antimicrobial, Atterberg limits, Bioaccumulation, Biodegradation, Chronic toxicity, Composition, Conductivity, Consolidation, Contamination, Cytology, Density, Developmental and reproductive toxicology, Efficacy, Endocrine disruptor screening program, Environmental fate, Environmental metabolism, Expiration dating, Fluorescence, Formulation, Genotoxicity, GMO detection, Hydraulic conductivity, Impurity, Labeling, Metallurgical analysis, Minimum bactericidal concentration, Minimum inhibitory concentration, Mobility, Moisture, Mold - fungal - mycotoxin, Mutagenicity, Nutritional, Organic carbon, Oxidation reduction potential, Oxidation stability, Pathogen, Pathogenicity, PDCAAS, Permeability, pH, Phytosanitary, Plant metabolism, Proficiency, Purity, Radioactivity, Radiochemical, Sanitation, Sensory, Shelf life, Soil microflora, Solubility, Specific gravity, Subchronic toxicity, Terrestrial toxicology, Toxicokinetic, Vigor and germination, Water activity, Wildlife toxicology
Industry-specific lab equipment may include:
automated weather stations, colorimeters, conductivity analyzers, dry ovens, fat analyzers, incubators, moisture testers, nitrogen/oxygen analyzers, pH meters, porometers
What else, if anything, is unique about the labs in the agriculture industry? The food and beverage industry is closely linked. For example, the State of Pennsylvania's Department of Agriculture includes a food safety laboratory division.[14] However, for the purposes of this guide, food, beverages, and ingredients are separated out as its own industry. Even raw materials that can be consumed alone such as cow milk or apples require some processing and handling (e.g., cleaning and packaging). In other words, the agriculture industry is arguably worried about the research, development, growth, and safety of what goes into what the food and beverage industry provides. Agriculture labs also have obvious tie-ins to environmental laboratories, as agricultural activities impact the environment and vice versa. Ties to veterinary labs may seem evident, and in fact many universities lump veterinary science programs with agriculture programs. However, animal science as a scientific discipline is arguably more closely aligned with agriculture science, as animal science takes a broader approach to the production, care, nutrition, and processing of animal-based products.[15]
LIMSwiki resources
Automotive, aerospace, and marine
Laboratories in the automotive, aerospace, and maritime travel industry are focused on the design, development, and testing of components, materials, fluids, etc. that make up vehicles that operate on land, on sea, in air, and in outer space. These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):
- analysis and assessment of chemicals and petrochemicals[16]
- analysis and assessment of materials[17][18]
- analysis and assessment of safety[17][18]
- tracking and analysis of structural integrity[19]
- design and analysis of lighting[20]
- design and analysis of chassis[21]
- design and analysis of fuel cells[22]
- failure analysis[23]
How do automotive, aerospace, and marine laboratories intersect the average person's life on a daily basis? While much scientific effort has gone into the development of modern vehicles — a significant portion of it in some sort of laboratory — from the ergonomic shift knob and regenerative braking system to the quantum accelerometer[24] and solid rocket booster, the laboratory testing that goes into designing safer products and systems is the easiest for the layperson to relate to. From Volvo and Nils Bohlin's contribution of the three-point seat belt[25] to the continuing improvement of automotive and pedestrian impact safety standards[26], traditional and non-traditional laboratories alike are responsible for advances in keeping drivers, passengers, and pedestrians safer. Without these laboratories in place — and without the related efforts of pioneering automotive engineers developing and propagating tested standards in the 1910s[27] — the safety of vehicles arguably wouldn't be anything like what it is today. Secondarily, vehicle reliability and longevity would also suffer.
Client types
Private - Private laboratories in this industry are usually either associated directly with a vehicle manufacturer (e.g., Ford Motor Company, Boeing Company, Gulf Craft) or act as a third-party contract laboratory for manufacturers and designers who are unable or unwilling to invest in their own private laboratory. Aside from analytical services, these labs often include consulting services on design management and analysis as well as team and project management.
Examples include:
Government - Government-run transportation-related laboratories conduct specialized topical research, provide analytical services, and oversee federal, state, and local programs in the industry. From aircraft fatigue research to emissions testing to transportation system modelling, these public or public-private labs may act as major research hubs or checkpoints of regulated testing.
Examples include:
- H.A. Wills Structures and Materials Test Centre
- U.S. EPA National Vehicle and Fuel Emissions Laboratory
- U.S. Department of Energy, Argonne National Laboratory, Transportation Research And Analysis Computing Center
Academic - Automotive, aerospace, and maritime transportation laboratories associated with higher education institutions act as both teaching locations for new students and fundamental and applied research locations for more advanced students. That academic research may be funded by industry sources, by a government, or by a non-profit or foundation, and some academic laboratories may act as a public-private entity when a non-profit or private entity partners with the higher education institution.
Examples include:
- Massachusetts Institute of Technology's Sloan Automotive Laboratory
- Michigan State University's Energy & Automotive Research Laboratory
- National Technical University of Athens' Laboratory for Maritime Transport
Functions
What are the most common functions? Analytical, research/design, and QA/QC
What materials, technologies, and/or aspects are being analyzed, researched, and quality controlled? combustion, emissions, fluid dynamics, lubricants, materials and components, paints and coatings, power conversion and control, propulsion and power generation, safety, structural mechanics, transportation system modeling
What sciences are being applied in these labs? biomechanics, chemical, electrical engineering, electronic engineering, environmental, ergonomics, materials science, mathematics, mechanical engineering, physics, safety engineering, software engineering
What are some examples of test types and equipment?
Common test types include:
Accelerated stress testing, Accelerated weathering, Acceleration, Acoustical, Adhesion, Aging, Altitude, Ash, Case depth, Characterization, Chemical and materials compatibility, Cleanliness, Climatics, Combustion, Comparative Tracking Index, Compliance/Conformance, Compression, Conductivity, Contact mechanics, Corrosion, Damage tolerance, Degredation, Design review and evaluation, Dielectric withstand, Dimensional, Discoloration, Dynamics, Efficiency, Electromagnetic compatibility, Electromagnetic interference, Electrostatic discharge, Emissions, Endurance, Environmental stress-cracking resistance, Ergonomics, Etching, Failure, Fatigue, Feasibility, Flammability, Flash point, Fluid dynamics, Friction, Functional testing, Hazard analysis, Heat resistance, Hydraulic, Immersion, Impact, Inclusion, Inflatability, Ingress, Iterative, Lightning, Lubricity, Macroetch, Mass, Mechanical, Mechanical durability, Oxidation reduction potential, Passivation, Performance, Permeability, pH, Photometric, Plating and coating evaluations, Proficiency, Qualification, Quality control, Reliability, Resistance - capacitance - inductance, Safety, Shear, Shock, Stress corrosion cracking, Surface topography, Tensile, Thermal, Torque, Ultraviolet, Usability, Velocity and flow, Vibration, Visibility, Voltage, Weathering
Industry-specific lab equipment may include:
battery load tester, carbon sulfur analyzer, circuit tester, colorimeter, compression tester, demonstration and simulation equipment, digital multimeter, gas analyzer, hardness tester, heat treatment furnace, salt spray chamber, temperature and humidity chamber, tension tester, thermal shock chamber
What else, if anything, is unique about the labs in the automotive, aerospace, and maritime travel industry? A September 2010 Brookings report stated that "innovation activity undertaken in the private sector of the auto industry extends far beyond the automaker itself, as nearly three-fourths of the value of a vehicle is added by companies other than the automaker."[28] Though the report doesn't directly mention who makes up those companies, presumably industry-focused R&D, QA, and compliance testing laboratories make up at least a small portion of them. As for intersections with other industries, the petrochemical, environmental, and energy industries are closely linked, providing insight and advances in combustion, emissions control, and alternative fuel sources to automobile, airplane, boat, and space vehicle designers and manufacturers.
LIMSwiki resources
- None
Calibration and standards
Laboratories in the calibration and standards industry are focused on testing the accuracy of measurement devices and reference standards, correcting inaccuracies in measurement devices, and developing and using standards/reference equipment and devices for calibration testing. Broadly speaking, these laboratories will appear as stand-alone, accredited laboratories performing calibrations for customers on request; as in-house calibration laboratories found in production facilities testing their equipment against working standards tested by the third-party accredited lab; or in a university setting, which may or may not offer accredited third-party calibration services.[29] These labs are found in the private, government, and academic sectors and provide many different services, including (but not limited to):
- calibration of working or reference standards used in other calibration activities[30]
- calibration of mechanical, electronic, and other instruments and components, in lab or onsite[29][30]
- maintenance and repair of instruments
- documentation of tests for regulatory or audit purposes
- enact measurement assurance programs[31]
How do calibration and standards laboratories intersect the average person's life on a daily basis? Let's turn to an introductory section of Jay L. Bucher's The Quality Calibration Handbook to help visualize an answer to this question[32]:
Without calibration, or by using incorrect calibrations, all of us pay more at the gas station, for food weighed incorrectly at the checkout counter, and for speeding tickets. Incorrect amounts of ingredients in your prescription and over-the-counter (OTC) drugs can cost more, or even cause illness or death. Because of poor or incorrect calibration, killers and rapists are either not convicted or are released on bad evidence. Crime labs cannot identify the remains of victims or wrongly identify victims in the case of mass graves. Airliners fly into mountaintops and off the ends of runways because they don't know their altitude and/or speed. Babies are not correctly weighed at birth. The amount of drugs confiscated in a raid determines whether the offense is a misdemeanor or a felony; which weight is correct? ... Satellites and everything they affect would be a thing of the past, as would be the manufacturing and production of almost everything made in the world today.
Client types
Private - As previously mentioned, private industry labs are largely either in a production facility or act as a third-party contract laboratory for manufacturers who are unable or unwilling to invest in their own private calibration laboratory. Aside from making the calibration (comparison), these labs may also provide maintenance and repair services as well as compliance documentation.
Examples include:
Government - These government-affiliated labs are often at or near the top of the chain of calibration labs, working with others to link their equipment to national or even international measurement standards. They can be found not only at the federal level but also at the state/territory level and may even exist as public-private partnership.
Examples include:
- National Institute of Standards and Technology
- Pennsylvania Standards Laboratory
- Sandia National Laboratories' Primary Standards Laboratory
Academic - Like agriculture labs, calibration and standards laboratories associated with higher education institutions are often of a hybrid client type and function. They may multi-purpose a laboratory for research, teaching, and professional calibration services, processing equipment and instruments from external third-party clients, acting in some ways like a private analytical lab would. Some university labs may have strong ties (through contracts or received funding) with commercial and government entities, leveraging university research and knowledge to those external parties to further fund university laboratory teaching efforts.
Examples include:
- University of Colorado - Boulder's Laboratory for Atmospheric and Space Physics
- University of Minnesota's Particle Calibration Laboratory
- Utah State's Utah Water Research Laboratory, Hydraulics Laboratory
Functions
What are the most common functions? Calibration, research/design, QA/QC, teaching
What materials, technologies, and/or aspects are being calibrated, researched, and quality controlled? Electronics, measurement tools, mechanical devices, primary standards; chronometric, dimensional, hardness, photometric, sensitivity, thermal, volumetric
What sciences are being applied in these labs? applied statistics, engineering, metrology, physics
What are some examples of test types and equipment?
Common test types include:
Absorption, Acceleration, Acoustical, Compression, Dimensional, Grain and particle size, Humidity, Mass, Optical, Oxidation reduction potential, pH, Photometric, Power quality, Pressure, Proficiency, Reflectance, Resistance - capacitance - inductance, Temperature, Tensile, Torque, Validation, Velocity and flow,
Industry-specific lab equipment may include:
benchtop precision meters, calibration mass sets, dry block probe calibrators, heated calibration bath, infrared calibrator, milliamp loop calibrator, multifunction calibrator, pressure calibrator, stage micrometer, standard resistors, standard capacitors, standard inductors, surface probe tester, thermocouple calibrator, torque reference transducer
What else, if anything, is unique about the labs in the calibration industry? Calibration laboratories, whether located in a manufacturing facility or as a stand-alone third-party facility, have special placement and environmental requirements that must be met to ensure optimal operations. This includes maintaining a strict range of relative humidity; maintaining temperature stability and uniformity; and managing air flow, vibration, and dust issues properly.[30] Many calibration labs found in higher education facilities seem to be multipurpose, capable of handling not only teaching and research functions but also able to provide independent calibration services to external customers, public and private. In the U.S. at least, the government is engaged in several public-private ventures involving calibration and standards laboratories.
LIMSwiki resources
Chemical
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
- California's Environmental Chemistry Laboratory
- North Carolina Department of Transportation Chemistry Laboratory
- U.S. Department of Transportation's Federal Highway Administration Chemistry Laboratory
Academic -
Examples include:
- Dartmouth General Chemistry Lab
- Ohio State University's McPherson Chemical Laboratory
- Princeton University's Frick Chemistry Laboratory
Functions
What are the most common functions? Analytical, research/design, QA/QC, and teaching
What materials and/or technologies are being analyzed, researched, and quality controlled? biological materials, ceramics, dyes and pigments, fragrances, glass, inorganics, lubricants, manufactured materials, metals, petrochemicals, polymers, raw chemicals
What sciences are being applied in these labs? Insert text here - See http://www.chemistry2011.org/branchesofchemistry
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the calibration industry? Since chemistry knowledge and its application is vital to many businesses' success, we see significant crossover into the cosmetic, environmental, manufacturing, petrochemical, and pharmaceutical industries.
LIMSwiki resources
Clinical, public and private
Insert broad information about the industry here. (Covers a wide swath of labs)
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
- CDC Newborn Screening and Molecular Biology Branch
- Missouri State Public Health Laboratory
- National Serology Reference Laboratory, Australia
Academic -
Examples include:
- Central Taiwan University of Science and Technology, Department of Medical Laboratory Science and Biotechnology
- Emory University Departments of Pathology and Laboratory Medicine
- University of Virginia Health System
Functions
What are the most common functions? Analytical, research/design, QA/QC, and teaching
What materials and/or technologies are being analyzed, researched, and quality controlled? Biological specimens, cadavers
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical and public health industry?
LIMSwiki resources
Clinical
- Anatomical pathology
- Clinical chemistry
- Clinical laboratory
- Clinical pathology
- Cytopathology
- Health informatics
- Hematology
- Histopathology
- Imaging informatics
- Immunoinformatics
- Physician office laboratory
Public health
Clinical research
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
- Frederick National Laboratory for Cancer Research
- NIH Clinical Trial Center
- Office of Regulatory Affairs' Field Laboratories
Academic -
Examples include:
- Johns Hopkins Clinical Research Unit Core Laboratory
- University of Colorado Denver Anschutz Medical Campus
- Washington University Clinical Research Laboratory
Functions
What are the most common functions? Research
What aspects and/or technologies are being calibrated, researched, and quality controlled?
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry?
LIMSwiki resources
Cosmetic
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Energy
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Environmental
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Food and beverage
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Geology and mining
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Law enforcement and forensics
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Life sciences and biotechnology
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Life sciences
- Biodiversity informatics
- Cancer informatics
- Genome informatics
- Genomics
- Life sciences industry
- Life sciences life cycle
- Neuroinformatics
Bioinformatics
Logistics
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Manufacturing and R&D
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Nanotechnology
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Petrochemical
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Pharmaceutical
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Power and utility
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
Veterinary
Insert broad information about the industry here.
Client types
Private - Insert applicable text here.
Examples include:
Government - Insert applicable text here.
Examples include:
Academic -
Examples include:
Functions
What are the most common functions? Insert text here
What aspects and/or technologies are being calibrated, researched, and quality controlled? Insert text here
What sciences are being applied in these labs? Insert text here
What are some examples of test types, terminology, and equipment? Insert text here
What else, if anything, is unique about the labs in the clinical research industry? Insert text here
LIMSwiki resources
References
- ↑ Stephens, B. (4 March 2015). "Inside look at FBI's new mobile forensics lab". KCTV5 News. Gannaway Web Holdings, LLC. http://www.kctv5.com/story/28266161/inside-look-at-fbis-new-mobile-forensics-lab. Retrieved 29 March 2017.
- ↑ Jain, R.; Rao, B. (2015). "Medical diagnostic laboratories provisioning of services in India". CHRISMED Journal of Health and Research 2 (1): 19–31. doi:10.4103/2348-3334.149340.
- ↑ 3.0 3.1 KlingStubbins (2010). Sustainable Design of Research Laboratories: Planning, Design, and Operation. John Wiley & Sons. pp. 17–18. ISBN 9780470915967. https://books.google.com/books?id=yZQhTvvVD7sC&pg=PA18. Retrieved 29 March 2017.
- ↑ Watch, D.D. (2001). "Chapter 2: Laboratory Types". Building Type Basics for Research Laboratories. John Wiley & Sons. pp. 37–99. ISBN 9780471217572. https://books.google.com/books?id=_EGpDgUNppIC&pg=PA37. Retrieved 29 March 2017.
- ↑ Hain, W. (2003). Laboratories: A Briefing and Design Guide. Taylor & Francis. pp. 2–5. ISBN 9781135822941. https://books.google.com/books?id=HPB4AgAAQBAJ&pg=PA2. Retrieved 29 March 2017.
- ↑ 6.0 6.1 6.2 Gliessman, S.R. (2007). Field and Laboratory Investigations in Agroecology. CRC Press. pp. 302. ISBN 9780849328466. https://books.google.com/books?id=pENYREeyGHoC&printsec=frontcover.
- ↑ Askey, K. (7 December 2016). "Feedstocks - Increasing nutrition". Oak Ridge National Laboratory. U.S. Department of Energy, Office of Science. https://www.ornl.gov/news/feedstocks-increasing-nutrition. Retrieved 21 May 2017.
- ↑ "Research Unit: Fiber and Chemical Sciences Research". Forest Products Laboratory. U.S. Forest Service. https://www.fpl.fs.fed.us/research/units/4709.php. Retrieved 21 May 2017.
- ↑ 9.0 9.1 "Forest Health & Conditions". USDA Forest Service Southern Research Station. U.S. Forest Service. https://www.srs.fs.usda.gov/research/forest-health/. Retrieved 21 May 2017.
- ↑ U.S. Congress, Office of Technology Assessment (August 1992). "Chapter 8: Scientific Issues: Risk Assessment and Risk Management". A New Technological Era for American Agriculture. U.S. Government Printing Office. pp. 225–256. ISBN 9780160379784. https://www.princeton.edu/~ota/disk1/1992/9201/9201.PDF.
- ↑ National Academies Press (2012). Meeting Critical Laboratory Needs for Animal Agriculture: Examination of Three Options. National Academy of Science. pp. 144. ISBN 9780309261296. https://www.nap.edu/catalog/13454/meeting-critical-laboratory-needs-for-animal-agriculture-examination-of-three.
- ↑ Singh, R.B. (2012). "Chapter 1: Climate Change and Food Security". In Tuteja, N.; Gill, S.S.; Tuteja, R.. Improving Crop Productivity in Sustainable Agriculture. John Wiley & Sons. pp. 1–22. ISBN 9783527665198. https://books.google.com/books?id=vtPmQIEXZVcC&pg=PT31.
- ↑ "Hudson Valley Research Laboratory". Hudson Valley Research Lab, Inc. 2017. http://www.hudsonvalleyresearchlab.org/. Retrieved 29 March 2017.
- ↑ "Food Safety Laboratory Division". Pennsylvania Department of Agriculture. 2017. http://www.agriculture.pa.gov/Protect/FoodSafety/Laboratory/Pages/default.aspx. Retrieved 29 March 2017.
- ↑ Flanders, F. (2011). Exploring Animal Science. Cengage Learning. pp. 38–39. ISBN 9781435439528. https://books.google.com/books?id=WT1Ws2o3keYC&pg=PA38.
- ↑ Phlegm, H.K. (2009). The Role of the Chemist in Automotive Design. CRC Press. pp. 216. ISBN 9781420071894. https://books.google.com/books?id=tRzfAwbzbNMC&printsec=frontcover.
- ↑ 17.0 17.1 Elmarakbi, A., ed. (2013). Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness. John Wiley & Sons. pp. 472. ISBN 9781118535264. https://books.google.com/books?id=wfxQAQAAQBAJ&printsec=frontcover.
- ↑ 18.0 18.1 Davies, G. (2012). Materials for Automobile Bodies. Elsevier. pp. 416. ISBN 9780080969800. https://books.google.com/books?id=_fZsIeCavO8C&printsec=frontcover.
- ↑ Staszewski, W.; Boller, C.; Tomlinson, G.R., ed. (2004). Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. John Wiley & Sons. pp. 288. ISBN 9780470092835. https://books.google.com/books?id=nzSPVBZ_Yg0C&printsec=frontcover.
- ↑ Wördenweber, B.; Wallaschek, J.; Boyce, P.; Hoffman, D.D. (2007). Automotive Lighting and Human Vision. Springer Science & Business Media. pp. 410. ISBN 9783540366973. https://books.google.com/books?id=yatUXs8QQAMC&printsec=frontcover.
- ↑ Reimpell, J.; Stoll, H.; Betzler, J., ed. (2001). The Automotive Chassis: Engineering Principles. Butterworth-Heinemann. pp. 456. ISBN 9780080527734. https://books.google.com/books?id=fuXf3wmahM8C&printsec=frontcover.
- ↑ Kocha, S.S. (2012). "Chapter 15: Polymer Electrolyte Membrane (PEM) Fuel Cells, Automotive Applications". In Kreuer, K.-D.. Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Springer Science & Business Media. pp. 473–518. ISBN 9781461457855. https://books.google.com/books?id=LE99dRxwtVcC&pg=PA473.
- ↑ Reddy, A.V. (2004). Investigation of Aeronautical and Engineering Component Failures. CRC Press. pp. 368. ISBN 9780203492093. https://books.google.com/books?id=WkXRBQAAQBAJ&printsec=frontcover.
- ↑ Marks, P. (14 May 2014). "Quantum positioning system steps in when GPS fails". New Scientist. New Scientist Ltd. https://www.newscientist.com/article/mg22229694-000-quantum-positioning-system-steps-in-when-gps-fails/. Retrieved 24 May 2017.
- ↑ "Three-point seatbelt inventor Nils Bohlin born". History.com. A+E Networks. 2010. http://www.history.com/this-day-in-history/three-point-seatbelt-inventor-nils-bohlin-born. Retrieved 24 May 2017.
- ↑ Atiyeh, C. (9 December 2015). "NHTSA Overhauling Crash Tests for 2019 Model Year Cars". Car and Driver. Hearst Communications, Inc. http://blog.caranddriver.com/nhtsa-overhauling-crash-tests-for-2019-model-year-cars/. Retrieved 24 May 2017.
- ↑ Thompson, G.V. (1954). "Intercompany Technical Standardization in the Early American Automobile Industry". The Journal of Economic History 14 (1): 1–20. http://www.jstor.org/stable/2115223.
- ↑ Klier, T.; Sands, C. (September 2010). "The Federal Role in Supporting Auto Sector Innovation" (PDF). Metropolitan Policy Program. Brookings Institution. https://www.brookings.edu/wp-content/uploads/2016/07/0927_great_lakes_auto.pdf. Retrieved 24 May 2017.
- ↑ 29.0 29.1 Czichos, H.; Saito, T.; Smith, L.E., ed. (2011). "Chapter 3: Quality in Measurement and Testing". Springer Handbook of Metrology and Testing. Springer Science & Business Media. pp. 45–49. ISBN 9783642166419. https://books.google.com/books?id=fpTE1Z5UfsQC&pg=PA47.
- ↑ 30.0 30.1 30.2 Bucher, J.L. (2007). "Chapter 12: Calibration Environment". The Quality Calibration Handbook: Developing and Managing a Calibration Program. ASQ Quality Press. pp. 113–116. ISBN 9780873897044. https://books.google.com/books?id=j7z9QaYFhrUC&pg=PA3.
- ↑ "Policies". National Institute of Standards and Technology. 25 August 2016. https://www.nist.gov/calibrations/policies. Retrieved 24 May 2017.
- ↑ Bucher, J.L. (2007). "Chapter 1: Preventing the Next Great Train Wreck". The Quality Calibration Handbook: Developing and Managing a Calibration Program. ASQ Quality Press. pp. 3–8. ISBN 9780873897044. https://books.google.com/books?id=j7z9QaYFhrUC&pg=PA3.