Journal:Evaluating health information systems using ontologies
Full article title | Evaluating health information systems using ontologies |
---|---|
Journal | JMIR Medical Informatics |
Author(s) | Eivazzadeh, Shahryar; Anderberg, Peter; Larsson, Tobias C.; Fricker, Samuel A.; Berglund, Johan |
Author affiliation(s) | Blekinge Institute of Technology; University of Applied Sciences and Arts Northwestern Switzerland |
Primary contact | Email: shahryar.eivazzadeh [at] bth.se; Phone: 46 765628829 |
Editors | Eysenbach, G. |
Year published | 2016 |
Volume and issue | 4 (2) |
Page(s) | e20 |
DOI | 10.2196/medinform.5185 |
ISSN | 2291-9694 |
Distribution license | Creative Commons Attribution 2.0 |
Website | http://medinform.jmir.org/2016/2/e20/ |
Download | http://medinform.jmir.org/2016/2/e20/pdf (PDF) |
This article should not be considered complete until this message box has been removed. This is a work in progress. |
Abstract
Background: There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems.
Objective: The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems — whether similar or heterogeneous — by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework.
Methods: On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of seven cloud-based eHealth applications that were developed and deployed across European Union countries.
Results: The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the sevem eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project.
Conclusions: The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context-sensitive, and relevant across a heterogeneous set of health information systems.
Keywords: health information systems; ontologies; evaluation; technology assessment; biomedical
Introduction
In one aspect at least, the evaluation of health information systems matches well with their implementation: they both fail very often.[1][2][3] Consequently, in the absence of an evaluation that could deliver insight about the impacts, an implementation cannot gain the necessary accreditation to join the club of successful implementations. Beyond the reports in the literature on the frequent accounts of this kind of failure[3], the reported gaps in the literature[4], and newly emerging papers that introduce new ways of doing health information system evaluation[5], including this paper, can be interpreted as a supporting indicator that the attrition war on the complexity and failure-proneness of health information systems is still ongoing.[6] Doing battle with the complexity and failure-proneness of evaluation are models, methods, and frameworks that try to address what to evaluate, how to evaluate, or how to report the result of an evaluation. On this front, this paper tries to contribute to the answer of what to evaluate.
References
- ↑ Littlejohn, P.; Wyatt, J.C.; Garvican, L. (2003). "Evaluating computerised health information systems: Hard lessons still to be learnt". BMJ 326 (7394): 860–3. doi:10.1136/bmj.326.7394.860. PMC PMC153476. PMID 12702622. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC153476.
- ↑ Kreps, D.; Richardson, H. (2007). "IS Success and Failure — The Problem of Scale". The Political Quarterly 78 (3): 439–46. doi:10.1111/j.1467-923X.2007.00871.x.
- ↑ 3.0 3.1 Greenhalgh, T.; Russell, J. (2010). "Why do evaluations of eHealth programs fail? An alternative set of guiding principles". PLoS Medicine 7 (11): e1000360. doi:10.1371/journal.pmed.1000360. PMC PMC2970573. PMID 21072245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970573.
- ↑ Chaudhry, B.; Wang, J.; Wu, S. et al. (2006). "Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care". Annals of Internal Medicine 144 (10): 742-52. doi:10.7326/0003-4819-144-10-200605160-00125. PMID 16702590.
- ↑ Yusof, M.M.; Kuljis, J.; Papazafeiropoulou, A.; Stergioulas, L.K. (2008). "An evaluation framework for health information systems: Human, organization and technology-fit factors (HOT-fit)". International Journal of Medical Informatics 77 (6): 386-98. doi:10.1016/j.ijmedinf.2007.08.011. PMID 17964851.
- ↑ Yusof, M.M.; Papazafeiropoulou, A.; Paul, R.J.; Stergioulas, L.K. (2008). "Investigating evaluation frameworks for health information systems". International Journal of Medical Informatics 77 (6): 377-85. doi:10.1016/j.ijmedinf.2007.08.004. PMID 17904898.
Abbreviations
EU: European Union
FI: Future Internet
FI-STAR: Future Internet Social and Technological Alignment Research
FI-PPP: Future Internet Public-Private Partnership Programme
FITT: Fit between Individuals, Task and Technology
HOT-fit: Human, Organization, and Technology Fit
INAHTA: International Network of Agencies for Health Technology Assessment
MAST: Model for Assessment of Telemedicine applications
OWL: Web Ontology Language
STARE-HI: Statement on the Reporting of Evaluation studies in Health Informatics
TAM: Technology Acceptance Model
TAM2: Technology Acceptance Model 2
UTAUT: Unified Theory of Acceptance and Use of Technology
UVON: Unified eValuation using Ontology
Notes
This presentation is faithful to the original, with only a few minor changes to presentation. In several cases the PubMed ID was missing and was added to make the reference more useful.
Per the distribution agreement, the following copyright information is also being added:
©Shahryar Eivazzadeh, Peter Anderberg, Tobias C. Larsson, Samuel A. Fricker, Johan Berglund. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 16.06.2016.