Difference between revisions of "LIMS feature"
Shawndouglas (talk | contribs) (→Sample and result batching: Added information about batches.) |
Shawndouglas (talk | contribs) (Added more info to scheduling.) |
||
Line 54: | Line 54: | ||
===Task and event scheduling=== | ===Task and event scheduling=== | ||
Within the context of a LIMS, the ability to schedule a task or event is a natural extension of how work was done in a laboratory before the advent of data management systems. Workloads are assigned to technicians, maintenance schedules are created and followed, and research deadlines must be observed. While these tasks have in the past been performed without LIMS, a modern data management system can now optimize those tasks and provide additional scheduling functionality to streamline the operation of a lab. [[Autoscribe Ltd.]], for example, offers a scheduling module for its LIMS that allows users to automatically schedule multiple jobs, data backups, alarms, and reports.<ref name=ASSched>{{cite web|url=http://www.autoscribe.co.uk/matrix-gemini/additional-modules/scheduler |title=Matrix Gemini - Scheduler |publisher=Autoscribe Ltd. |accessdate=11 February 2012}}</ref> Some LIMS like [[LabWare, Inc.|LabWare, Inc.'s]] LabWare LIMS offer multiple types of schedulers that match to the particular functions of a research laboratory.<ref name=LWSched>{{cite web|url=http://www.labware.com/LWWeb.nsf/lp/en040102 |title=LabWare LIMS - Scheduler |publisher=LabWare Inc. |accessdate=11 February 2012}}</ref> | |||
Examples of tasks and events that can feasibly be scheduled in a LIMS include: | |||
* registration of received samples into the system | |||
* production of reports | |||
* creation and sending of e-mails and alerts | |||
* maintenance of equipment | |||
* assigning workloads to personnel | |||
===Option for manual result entry=== | ===Option for manual result entry=== |
Revision as of 19:30, 11 February 2012
You can find a listing of all LIMS vendors — and by extension, the features their products offer — on the LIMS vendor page. |
A LIMS feature is one or more pieces of functionality that appear within a laboratory information management system (LIMS).
The LIMS is an evolving concept, with new features and abilities being introduced every year. As laboratory demands change and technological progress continues, the functions of a LIMS will also change. Yet like the automobile, the LIMS tends to have a base set of functionality that defines it. That functionality can roughly be divided into five laboratory processing phases, with numerous software functions falling under each[1]:
- the reception and log in of a sample and its associated customer data
- the assignment, scheduling, and tracking of the sample and the associated analytical workload
- the processing and quality control associated with the sample and the utilized equipment and inventory
- the storage of data associated with the sample analysis
- the inspection, approval, and compilation of the sample data for reporting and/or further analysis
Of course, there are LIMS features that are difficult to categorize under any of these phases. Such features often contribute to the entire LIMS and how it's utilized. For example, multilingual support appears in LIMS like Assaynet Inc.'s LIMS2010 and Two Fold Software's Qualoupe LIMS, allowing users to interact with the LIMS in more than one language. Some functionality may also overlap several laboratory phases, making it difficult to firmly classify.
The features described below come from an analysis of freely available LIMS product information on vendor websites. An attempt was made to discover the features most utilized in vendors' LIMS products and collect information on those features for each LIMS. Not every possible feature is referenced here; some LIMS products fill specific niches, utilizing very unique functionality to solve a specific problem.
That said, it should be kept in mind that the categorization of features below is very loose. It may be viable to argue a feature belongs under a different section or multiple sections. For the purposes of organizing this information in an uncomplicated manner, however, some liberty has been taken in the categorizing of features.
Sample, inventory, and data management
To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.
Sample login and management
Sample management is one of the core functions a modern LIMS is tasked with, whether it's in a manufacturing, water treatment, or pharmaceutical laboratory.[2] As such, researchers who work in these types of labs are unable to complete their experiment-based goals without an effective method of managing samples. The process of sample management for experiments includes, but is not limited to[2]:
- storing related sample information, including aliquot numbers, dates, and external links
- setting user alerts for sample status
- creating and documenting viewable sample container schemas with name and status
- assigning sample access rights
Additional functionality that could potentially fall under this feature:
- utilizing a unique ID system
- barcoding of samples
- defining sample points and series
- creating data associations for samples
- issuing sample receipts
Sample tracking
For most laboratory personnel, knowing that a sample has arrived to the lab isn't good enough; they need to know where it's located and what is being done with it. Enter the sample tracking feature. Without it, many problems arise. In the forensic world, for example, many samples are linked to a criminal investigation. In this case, misidentification, contamination, or duplication can become significant issues: a lost sample is essentially missing evidence, while a duplicated sample can render it useless as evidence.[3]
After sample reception and its initial handling procedures, many LIMS can then track sample location as well as chain of custody. Location tracking usually involves assigning the sample to a particular freezer location, often down to the granular level of shelf, rack, box, row, and column. The process of tracking a sample has become more streamlined with increasing support of 2-D barcode technology. While handwritten labels were the norm, now barcode support in a LIMS can "tie together a vast amount of information, clearly relating each sample to a specific case."[3] Other event tracking such as freeze and thaw cycles that a sample undergoes in the laboratory may also be required. As each laboratory's needs for tracking additional data points can vary widely, many modern LIMS have implemented extensive configurability to compensate for varying environments.[4]
Sample and result batching
What is batching? The United States Environmental Protection Agency (EPA) defines a batch as "a group of samples which behave similarly with respect to the sampling or testing procedures being employed and which are processed as a unit."[5] This definition can be applied to many laboratories which handle large quantities of samples for some form of analysis or processing. A LIMS that has the ability to check in, link, and track groups of samples across one or multiple facilities is valuable to such laboratories. Additionally, batching the analysis results of multiple samples or groups of samples gives laboratories more flexibility with how they manage their data.
Task and event scheduling
Within the context of a LIMS, the ability to schedule a task or event is a natural extension of how work was done in a laboratory before the advent of data management systems. Workloads are assigned to technicians, maintenance schedules are created and followed, and research deadlines must be observed. While these tasks have in the past been performed without LIMS, a modern data management system can now optimize those tasks and provide additional scheduling functionality to streamline the operation of a lab. Autoscribe Ltd., for example, offers a scheduling module for its LIMS that allows users to automatically schedule multiple jobs, data backups, alarms, and reports.[6] Some LIMS like LabWare, Inc.'s LabWare LIMS offer multiple types of schedulers that match to the particular functions of a research laboratory.[7]
Examples of tasks and events that can feasibly be scheduled in a LIMS include:
- registration of received samples into the system
- production of reports
- creation and sending of e-mails and alerts
- maintenance of equipment
- assigning workloads to personnel
Option for manual result entry
Multiple data viewing methods
Data and trend analysis
Data and equipment sharing
Customizable fields and/or interface
Query capability
Import data
Internal file or data linking
External file or data linking
ELN support or integration
Export to MS Excel
Export raw data
Data warehouse
Deadline control
Production control
Project and/or task management
Inventory management
Document creation and management
Case management
Workflow management
Specification management
Customer management
Billing management
Quality, security, and compliance
To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.
Regulatory compliance
QA/QC functions
Performance evaluation
Audit trail
Chain of custody
Configurable roles and security
Data validation
Data encryption
Version control
Automatic data backup
Environmental monitoring
Reporting, barcoding, and printing
To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.
Custom reporting
Report printing
Label support
Barcode support
Export to PDF
Export to MS Word
Export to HTML or XML
Fax integration
Email integration
Base functionality
To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.
Administrator management
Modular
Instrument interfacing and management
Mobile device integration
Alarms and/or alerts
Voice recognition system
External monitoring
Messaging
Multilingual
Network capable
Web client or portal
Online or integrated help
Software as a service delivery model
Usage-based cost
References
- ↑ D. O. Skobelev, T. M. Zaytseva, A. D. Kozlov, V. L. Perepelitsa, and A. S. Makarova (2011). "Laboratory information management systems in the work of the analytic laboratory" (PDF). Measurement Techniques 53 (10): 1182–1189. doi:10.1007/s11018-011-9638-7. http://www.springerlink.com/content/6564211m773v70j1/.
- ↑ 2.0 2.1 Macneil, Rory (2011). "The benefits of integrated systems for managing both samples and experimental data: An opportunity for labs in universities and government research institutions to lead the way". Automated Experimentation 3 (2). doi:10.1186/1759-4499-3-2. http://www.aejournal.net/content/3/1/2.
- ↑ 3.0 3.1 Murthy, Tal; Brian Hewson (1 September 2010). "Effective Forensic Sample Tracking and Handling". American Laboratory. http://new.americanlaboratory.com/914-Application-Notes/506-Effective-Forensic-Sample-Tracking-and-Handling/. Retrieved 10 February 2012.
- ↑ Muntean, Edwarda; Nicoleta Munteanb; Tania Mihăiescua; Radu Mihăiescuc (2008). "LIMS use in laboratory data management". ProEnvironment/Promediu 1 (2): 19–23. http://proenvironment.ro/promediu/article/view/2835.
- ↑ "Batch Sizes And QC Questions". U.S. EPA. 27 July 2011. http://www.epa.gov/osw/hazard/testmethods/faq/faqs_qc.htm. Retrieved 11 February 2012.
- ↑ "Matrix Gemini - Scheduler". Autoscribe Ltd.. http://www.autoscribe.co.uk/matrix-gemini/additional-modules/scheduler. Retrieved 11 February 2012.
- ↑ "LabWare LIMS - Scheduler". LabWare Inc.. http://www.labware.com/LWWeb.nsf/lp/en040102. Retrieved 11 February 2012.