Difference between revisions of "User:Shawndouglas/sandbox/sublevel10"
Shawndouglas (talk | contribs) Tag: Reverted |
Shawndouglas (talk | contribs) Tag: Reverted |
||
Line 67: | Line 67: | ||
===2.2 What ISO/IEC 17025 asks of laboratories=== | ===2.2 What ISO/IEC 17025 asks of laboratories=== | ||
... | After discussing what types of labs are adopting the ISO/IEC 17025 standard, it's now time to get into the details of what the standard asks of adopting labs. Implementing a standard within a regulated business is rarely a straightforward process and has many challenges for all but the most well-organized and -resourced entities. ISO/IEC 17025 is no exception. At its core, the standard has a focus on quality, but that focus is stated through the lens of a lab's ability to demonstrate its competence, impartiality, and consistency across its operations. This section expands on these three characteristics, as well as the specific demands the standard places on the lab. It will also address a handful of gaps ISO/IEC 17025 has when compared to similar standards, as well as possible means towards filling those gaps. | ||
====2.2.1 Competence, impartiality, and consistent operations==== | ====2.2.1 Competence, impartiality, and consistent operations==== |
Revision as of 21:30, 20 January 2023
This is sublevel10 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see my discussion page instead. |
Sandbox begins below
2. How ISO/IEC 17025 affects and benefits laboratories
ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories is an internationally recognized standard developed by the International Organization for Standardization's (ISO's) ISO/CASCO Committee on Conformity Assessment. ISO/CASCO has stated that the standard was developed "with the objective of promoting confidence in the operation of laboratories," allowing them "to demonstrate they operate competently, and are able to generate valid results."[1] The standard has a long history, with adoption of the standard increasing steadily since 2010 according to ILAC[2], an international organization for accreditation bodies. However, laboratory adoption of ISO/IEC 17025 is not particularly easy, especially for small and academic labs[3], and several regions of the world encounter cultural, educational, and cost barriers in attempting to implement management standards like ISO/IEC 17025 and ISO 9001.[4][5] Additionally, for some laboratories like materials science labs, the process of adopting and implementing ISO/IEC 17025:2017 initially impacts them in a painful way due to the challenges posed by the restraining nature of the standard on research and development activities, which often require more operational flexibility.[6] However, a number of benefits almost always sprouts from the seeds of effort.[6]
The rest of this chapter will go into the details of which laboratories are most affected by the standard, what the standard asks of those laboratories as part of conformance, and what those laboratories gain by putting in the effort to conform to ISO/IEC 17025.
2.1 Types of labs affected by ISO/IEC 17025
The scope section of ISO/IEC 17025 indicates that the standard "is applicable to all organizations performing laboratory activities, regardless of the number of personnel."[1] Further, in its terms and definitions section, the standard states that a laboratory—for the purposes of the document—is a "body that performs one or more of ... testing, calibration, [and] sampling, associated with subsequent testing or calibration."[1] Of course, when it comes to testing, calibration, and sampling, these types of activities occur in a wide variety of industry contexts, including but not limited to environmental science, forensic science, food and beverage manufacturing, agricultural research, and pharmaceutical manufacturing.
The following subsections provide background on the different laboratory operations affected by ISO/IEC 17025 and give examples of ISO/IEC 17025-accredited activities, research topics, or calibration targets noted in academic literature. These subdivisions of labs are, in part, influenced by the work of Pillai et al. (though they largely fail to address calibration and reference testing labs in their work; these labs are added here).[7]
2.1.1 Analytical and regulatory testing labs
These types of labs conduct analytical tests on a wide variety of substances, materials, and equipment to ensure they are safe, effective, and secure for their application. Often times that testing is being performed due to a regulatory mandate concerning safety and efficacy.[7] Manufacturers of all types of consumables and consumer use products (e.g., pharamaceuticals, foods, and cosmetics) will turn to in-house or third-party analytical and regulatory testing laboratories to perform the recommended or mandated analyses on their products to ensure their quality and safety.[7] Additionally, federal, state, and local governments also have to follow regulations concerning frequent testing of municipal infrastructure, including water, wastewater, and construction activities.[8][9] Yet another example can be found with the analytical activities of the forensic laboratory, which provides a diverse array of investigative services.[10] Examples of activities conducted by these and similar labs under ISO/IEC 17025 recommendations and protocols include:
- analytical chemistry sampling[11];
- sampling and high-resolution gamma-ray spectrometry of environmental soil, tap water, and aerosol filters[12];
- radiological testing of food and drinking water[13];
- individual and environmental dosimetry testing[14];
- forensic paternity testing[15];
- forensic anthropology analyses[16]; and
- forensic toxicology and drug analysis.[17]
2.1.1.1 Product development and manufacturing labs
These are a subset of the above-mentioned analytical and regulatory testing labs, with a routine focus on pre-market research and development (R&D) and quality control analyses that help bring a product or service to market. That testing is typically conducted early on in a product lifecycle, based upon a set of predetermined limits set by a manufacturer or other criteria that are in turn driven by regulations and/or customer requirements.[7] This sort of testing could occur with sourcing ingredients or components to ensure they are certified to not contain allergens or an acceptable and safe level of contaminants, such as heavy metals. It also occurs during the development phase to ensure that any proposed final recipe or manufacturing specification doesn't have any unexpected toxicology or errors and has a reasonable chance of going to market.[18][19] Examples of activities conducted by these and similar labs under ISO/IEC 17025 recommendations and protocols include:
- pesticide testing of honey[20];
- nitrogen, protein, moisture, and ash analysis of foodstuffs[21];
- toxic and allergenic component/contaminant analysis of consumer cosmetic, personal care, and building products [22];
- long-range infrared camera development[23]; and
- veterinary low-dose Cannabis sativa extract development.[24]
2.1.2 Basic and applied research labs
Basic research labs seek to understand and form theories concerning scientific questions, while applied research labs typically follow that basic research, conducting studies to apply that basic research towards solving practical problems. Both "conduct their work to support and inform the understanding of science", as well as drive regulatory support[7], and these lab can benefit from the recommended approach of ISO/IEC 17025. Basic and applied research labs may appear in academia, in government, or in private industry, studying a wide variety of topics. Research topics in ISO/IEC 17025-certified labs include (but are not limited to):
- veterinary parasitology[25];
- environmental chemistry[26];
- diseases and their pathogenesis[7];
- pharmaceuticals[27]; and
- contract research projects.[28]
2.1.3 Reference measurement and calibration labs
A reference or calibration laboratory performs reference or calibration measurement procedures, or assigns reference values to test objects, later potentially providing those associated reference values for references or sources of traceability of test results.[29][30][31] ISO/IEC 17025 saw the addition of calibration laboratories to its focus in 1990 through its predecessor document ISO/IEC Guide 25 General requirements for the competence of calibration and testing laboratories as a greater means of lending "support for national systems, thus easing bilateral agreements" associated with laboratory testing.[32][33][34] In other words, with international trade hitting new records[35], it's more important than ever that an internationally recognized standardized approach to analyzing globally traded products is enacted, and the equipment and standards used for those analyses are themselves properly calibrated and maintained.[36] (After all, when the biggest output of a lab is its analyses, it's best to ensure they are precise, accurate, and timely.) Laboratory equipment isn't all that's getting calibrated, however. Reference and calibration labs also calibrate important equipment in other fields of expertise. Examples of instruments and equipment getting calibrated to a standard in ISO/IEC 17025 calibration labs include:
- radiation monitoring instruments[13];
- electronic medical equipment[37];
- laser and optical communication equipment[38]; and
- high-accuracy Global Navigation Satellite System-based instruments.[39]
2.1.4 A note about clinical laboratories
You may notice that the clinical laboratory doesn't appear in the above listing. That is because quality management in the clinical lab is best guided by ISO 15189:2022 Medical laboratories — Requirements for quality and competence. (This is not to say that ISO/IEC 17025-compliant environments haven't conducted clinical analyses, as they have[40][41][42][43], but it's not the most ideal standard to be compliant with in the clinical environment, and ISO 15189 is increasingly common in hospital and clinical labs.[44]) The standard, which received an update in December 2022, is described by the ISO as being "applicable to medical laboratories in developing their management systems and assessing their competence. It is also applicable for confirming or recognizing the competence of medical laboratories by laboratory users, regulatory authorities, and accreditation bodies."[45] Development of the standard began in the mid-1990s due to the lack of applicability ISO/IEC 17025 and ISO 9001 had to clinical labs. First published in February 2003, the standard was, however, developed with ISO/IEC 17025 and ISO 9001 in mind, taking the technical requirements of the first and the quality management requirements of the latter, while also adding input on professional requirements from the European Communities Confederation of Clinical Chemistry (EC4).[46] All said, ISO 15189 is arguably the best quality management standard for clinical laboratories as it takes into consideration the specific requirements of the medical environment and the importance of the medical laboratory to improving patient safety and outcomes.[47]
A potential companion to ISO 15189:2022 is the World Health Organization's Laboratory Quality Management System: Handbook. Though a bit outdated, as it was developed in 2011, the WHO handbook is based off of ISO 15189 and Clinical and Laboratory Standards Institute's (CLSI's) QMS01 A Quality Management System Model for Laboratory Services (or more specifically, its predecessor documents HS1 and GP26[48][49]).[47] The WHO and CLSI tend to go beyond ISO/IEC 17025 by incorporating 12 quality system essentials (QSEs)—"a set of coordinated activities that serve as building blocks for quality management"—as part of their QMS framework and emphasize that all must be met for overall clinical laboratory quality improvement to be realized.[47][50]
For more on this topic, see Plebani and Sciacovelli's "ISO 15189 accreditation: Navigation between quality management and patient safety."
2.2 What ISO/IEC 17025 asks of laboratories
After discussing what types of labs are adopting the ISO/IEC 17025 standard, it's now time to get into the details of what the standard asks of adopting labs. Implementing a standard within a regulated business is rarely a straightforward process and has many challenges for all but the most well-organized and -resourced entities. ISO/IEC 17025 is no exception. At its core, the standard has a focus on quality, but that focus is stated through the lens of a lab's ability to demonstrate its competence, impartiality, and consistency across its operations. This section expands on these three characteristics, as well as the specific demands the standard places on the lab. It will also address a handful of gaps ISO/IEC 17025 has when compared to similar standards, as well as possible means towards filling those gaps.
2.2.1 Competence, impartiality, and consistent operations
The "Scope" section of ISO/IEC 17025:2017 indicates the standard "specifies the general requirements for the competence, impartiality, and consistent operation of laboratories." Unfortunately, the document only defines "impartiality," and not "competence" and "consistent operation"; as such, we have to improvise a bit to get to the bottom of the significance of these three terms.[1]
1. Competence: While ISO/IEC 17025 does not define "competence," it does reference ISO 15189 Medical laboratories — Requirements for quality and competence, as well as ISO 17034 General requirements for the competence of reference material producers, in the bibliography. Of them, ISO 15189:2012 defines competence as "demonstrated ability to apply knowledge and skills," while noting that the definition is given in a generic sense, with other ISO documents being more specific.[51] (Note that the latest version is ISO 15189:2022, released in December 2022; however, ISO/IEC 17025:2017 references the 2012 version.)
That said, ISO/IEC 17025:2017 is asking a laboratory to demonstrate an ability to apply its knowledge and skills effectively to all its operations.
2. Impartiality: ISO/IEC 17025:2017 defines "impartiality" as "presence of objectivity," adding several notes to the definition. First, the standard adds that "Objectivity means that conflicts of interest do not exist, or are resolved so as not to adversely influence subsequent activities of the laboratory." It also adds nine other terms that can convey the context of impartiality, including "freedom from conflict of interests," "freedom from bias," and "neutrality."[1]
That said, ISO/IEC 17025:2017 is asking a laboratory to demonstrate objectivity in its operations, remaining free from conflicts of interest, bias, and prejudice, while maintaining a level of neutrality to its primary output: analytical results.
3. Consistent operation: The ISO defines "consistency" in several of its standards (e.g., ISO 9241, ISO/IEC 25000), but the definition is specific to the context of those standards. As such, we have to look elsewhere and make reasonable assumption that the definition of "consistency" applies to ISO/IEC 17025:2017. Merriam-Webster's definition 1b of "consistency" is "harmony of conduct or practice with profession," with "profession" meaning "public proclamation" (i.e., the actual output of conduct or practice matches a stated expectation). This definition applies somewhat, but when paired with definition 3a—"firmness of constitution or character: persistency"—we come up with an idea of what the standard intends.[52]
ISO/IEC 17025:2017 is asking a laboratory to conduct its activities in an enduring manner that is consistent with the lab's goals, mission statement, and standard practices.
2.2.2 Demands on the laboratory
Of course, that's the top-level view. The rest of the standard elaborates on what a lab performing sampling, testing, and calibration activities must do to meet the three goals of competence, impartiality, and consistent operation, covering[1]:
- Section 4: General requirements,
- Section 5: Structural requirements,
- Section 6: Resource requirements,
- Section 7: Process requirements, and
- Section 8: Management system requirements.
The various components of these five sections impact the laboratory in many ways, placing demands on the lab while providing tangible and intangible benefits. The rest of this section will address the "demand" side and any gaps in support the standard has, while the subsequent section will address the potential benefits.
General requirements
Section 4 of ISO/IEC 17025:2017 addresses two primary concepts: impartiality and confidentiality. We note that right from the start, one of the three top-level points is addressed in impartiality, asking the lab to maintain commitment to and responsibility for impartiality, while identifying and acting upon any risk to impartiality. Additionally, the standard asks the lab to treat "all information obtained or created during the performance of laboratory activities" with confidentiality. This means taking the necessary security precautions to ensure only authorized individuals can have access to laboratory information, and communicating any release of said confidential information in a timely and appropriate fashion should a law or contract mandate its release.[1]
Structural requirements
Section 5 of ISO/IEC 17025:2017 addresses the organizational pillars required of a laboratory in order to meet the three top-level points of competence, impartiality, and consistent operations. It notes that the lab should be a legal entity, held liable by the laws that created it, and that entity should have management that is clearly identified as having responsibility for various operations. That entity must also document its activities, procedures, and methods that fall under the scope of ISO/IEC 17025:2017 and ensure those activities are conducted in a competent, impartial, and consistent manner. Finally, it recognizes the importance of people to meeting those goals, asking the lab to ensure those people have the authority and resources necessary to create, monitor, and act upon deviations from the lab's procedures, methods, and management systems, including the quality management system (QMS).[1]
Resource requirements
Section 6 of ISO/IEC 17025:2017 addresses the importance of resources to the laboratory in meeting its goals and maintaining a high level of standard practice. The standard covers personnel, the facility and working environment, equipment, metrological traceability (through calibration), and third-party products and services. First, personnel must demonstrate competence and impartiality, which must be proven and documented. Those people must also be aware of their duties and responsibilities, while being given the means to perform them. Second, the facility and work environment must be suitable, without negatively impacting analytical results, and the conditions should be monitored, documented, and controlled to prevent and resolve issues with contamination, interference, or other detrimental influences. Third, what is a laboratory without the proper equipment to effectively meet its goals? Here the standard asks labs to provide the necessary in-lab resources to get the job done. Of course, just having that equipment isn't enough, and the standard asks that any measurement equipment be properly calibrated and able to provide accurate and timely results, with documentation concerning the activities of that equipment being recorded. Extending from there is the fourth topic of metrological traceability, defined as "the “property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty.”[1] The standard goes on to explain how this should best be achieved. Finally, third-party or "external" products and services are addressed, asking the lab to ensure those products and services are "suitable," as determined by review and approval within the organization. When working with those third parties, the lab should also be clear in communicating its own requirements to the third party.[1]
Process requirements
Section 7 of ISO/IEC 17025:2017 is a hefty one, directly addressing the actual work conducted in the laboratory. This section looks at 11 different aspects of workflow in the lab; a brief comment is made about each aspect (it's beyond the scope of this article to go into fine detail)[1]:
- Bid opportunities and contracts: Describes how labs and their clients should communicate clearly about and carefully document work requirements, test methods, and conformity to a specification or standard, as well as any deviation from or amendment to those agreed-upon items.
- Laboratory methods: Details the level of attention to and fitness of "methods and procedures for all laboratory activities," including how to develop, verify, validate, and document methods, as well as how to handle deviations from those methods.
- Laboratory sampling: Touches upon the importance of quality sampling plans and methods, as well as what they should contain.
- Test and calibration item management: Touches upon how test and calibration items should be handled, from beginning to end of the lab's workflow, as well as how those items should be identified and stored.
- Record management: Briefly addresses the management of technical records and what they should contain.
- Measurement uncertainty: Touches upon the topic of evaluating measurement uncertainty.
- Result validation: Describes the importance of result validation, including how results should be monitored and validated, while also addressing proficiency testing, inter-laboratory comparison, and continual improvement for further quality.
- Result reporting: Describes how results should be reported (including statements of conformity, opinions and interpretations, and amendments), as well as what the report should contain in regards to testing, calibration, and sampling.
- Complaint management: Describes how the lab should approach internal and external complaints surrounding its activities and services, emphasizing transparency and proper communication.
- Nonconformity management: Emphasizes the procedures required to effectively handle and mitigate nonconforming work.
- Data and information management: Recognizes that data and information represent the most critical output of the lab and states how that data and information should be effectively managed to ensure optimal laboratory operations and success.
Management system requirements
Section 8 of ISO/IEC 17025:2017 addresses the laboratory's management system. While the standard never directly calls it a "quality management system" or QMS—in fact, the word "quality" only appears once in this section—the implication in the opening paragraph is that the standard is addressing quality with its requirements for a management system, i.e., a QMS[1]:
The laboratory shall establish, document, implement, and maintain a management system that is capable of supporting and demonstrating the consistent achievement of the requirements of this document and assuring the quality of the laboratory results.
This section breaks the management system down into two options: Option A for a lab needing a built-from-scratch management system, or Option B should a lab already have an ISO 9001-driven management system in place. Most of the section is dedicated to addressing Option A and its requirements for proper documentation, document management, risk management, process improvement, corrective action, internal audits, and management review and buy-in.[1]
2.2.3 Addressing gaps in ISO/IEC 17025
It's important to note that ISO/IEC 17025 does not cover compliance with laboratory safety requirements.[47][7] Labs implementing the standard may very well want to examine and adopt components of other QMS frameworks to fill the gaps, for example, implementing the "Facilities and Safety" quality system essential (QSE) found in Clinical and Laboratory Standards Institute's (CLSI's) QMS01 A Quality Management System Model for Laboratory Services[53] and the World Health Organization's (WHO's) Laboratory Quality Management System: Handbook.[47] (A QSE, as defined by CLSI and WHO, is "a set of coordinated activities that serve as building blocks for quality management," with each needing to be "addressed if overall laboratory quality improvement is to be achieved."[47] Both organizations include 12 QSEs as part of their QMS framework and emphasize that all must be met for overall laboratory quality improvement to be realized.[47][50]) The "Facilities and Safety" QSE describes those elements that are essential to a laboratory's personnel, its design, and its safety in being able to prevent and control physical, chemical, and biological hazards from impacting operations. The WHO notes that addressing these elements through a laboratory safety program solidifies the lab's ability to provide quality data and services through protecting laboratorians, the facility, its equipment, and the work environment.[47]
Aside from safety, ISO/IEC 17025 has a few more minor gaps in how it addresses laboratory assessment tasks and personnel requirements when compared to the "Assessment" and "Personnel" QSEs of CLSI and WHO.[7] For example, the "Assessment" QSE addresses external audits, whereas ISO/IEC 17025 does not, and the topics of proficiency testing and other external quality assessment methods is more rigorous in the "Assessment" QSE. Additionally, while ISO/IEC 17025 speaks of needing to document competence requirements for personnel, the "Personnel" QSE delves into greater detail of competency assessment methods, policy writing, procedure development, training, and performance appraisal. A lab implementing and accrediting to ISO/IEC 17025:2017 may wish to further compare the nuances of these QSEs with the ISO standard as part of an effort to exceed the bare minimums of meeting ISO/IEC 17025 requirements.
2.3 How laboratories benefit from ISO/IEC 17025 compliance
As can be seen above, ISO/IEC 17025 asks a lot of a laboratory, placing requirements throughout the entire workflow. But not all is "pain" when making the effort to comply with ISO/IEC 17025; there is also "gain." Take for example Section 8 on management systems (and by extension, the QMS); the standard tells you that one of the benefits can be found in "assuring the quality of the laboratory results." Does a QMS automatically solve all the lab's problems concerning errors and quality? No, but when implemented well, the QMS will certainly have a positive impact on lab quality. In its 2011 Laboratory Quality Management System: Handbook, the WHO notes the following concerning the QMS model[47]:
Laboratories not implementing a good quality management system are guaranteed that there will be many errors and problems occurring that may go undetected. Implementing a quality management system may not guarantee an error-free laboratory, but it does yield a high-quality laboratory that detects errors and prevents them from recurring.
Complying with and accrediting to ISO/IEC 17025 has numerous other benefits aside from generating high-quality laboratory results. Researchers, standard developers, and labs of all types have claimed additional benefits of complying with and accrediting to ISO/IEC 17025, noting that doing so[6][7][54][34][55][56][57]:
- demonstrates conformance to an international standard that in turn expands a laboratory's business opportunities;
- demonstrates objectively, through accreditation, provision of quality and technically competent services;
- enhances the reliability, accuracy, and validity of analytical and calibration results produced by the lab;
- enhances the quality of testing, calibration, and sampling methods;
- encourages compliance to other standards of practice;
- facilitates traceability of measurements and calibrations to appropriate standards;
- encourages a proactive, risk-based organizational culture of quality that in turn enables the lab to better identify, assess, and address risk;
- encourages professionalism and pride within the organization;
- aids in controlling costs, improving measurement accuracy, and reducing waste;
- improves productivity, efficiency, and turnaround times among lab staff;
- improves reputation and performance in the lab's industry;
- ensures specific quality levels, compliance requirements, and customer needs are satisfied; and
- facilitates cooperation between laboratories and other entities internationally, while also accelerating and improving confidence in international trade.
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 "ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories". International Organization for Standardization. November 2017. https://www.iso.org/standard/66912.html. Retrieved 20 January 2023.
- ↑ "About ILAC > Facts & Figures". ILAC. 2021. https://ilac.org/about-ilac/facts-and-figures/. Retrieved 20 January 2023.
- ↑ Oliver, E.L. (August 2018). "Implementation of ISO/IEC Practices in Small and Academic Laboratories". University of Nebraska-Lincoln. pp. 38–40; 64–66. https://digitalcommons.unl.edu/foodscidiss/92/. Retrieved 20 January 2023.
- ↑ Okezue, Mercy A.; Adeyeye, Mojisola C.; Byrn, Steve J.; Abiola, Victor O.; Clase, Kari L. (1 December 2020). "Impact of ISO/IEC 17025 laboratory accreditation in sub-Saharan Africa: a case study" (in en). BMC Health Services Research 20 (1): 1065. doi:10.1186/s12913-020-05934-8. ISSN 1472-6963. PMC PMC7686690. PMID 33228675. https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-020-05934-8.
- ↑ Tayo Tene, Christian Valery; Yuriev, Alexander; Boiral, Olivier (2018), Heras-Saizarbitoria, Iñaki, ed., "Adopting ISO Management Standards in Africa: Barriers and Cultural Challenges", ISO 9001, ISO 14001, and New Management Standards (Cham: Springer International Publishing): 59–82, doi:10.1007/978-3-319-65675-5_4, ISBN 978-3-319-65674-8, http://link.springer.com/10.1007/978-3-319-65675-5_4. Retrieved 2022-12-20
- ↑ 6.0 6.1 6.2 Neves, Rodrigo S.; Da Silva, Daniel P.; Galhardo, Carlos E.C.; Ferreira, Erlon H.M.; Trommer, Rafael M.; Damasceno, Jailton C. (22 February 2017), Kounis, Leo D., ed., "Key Aspects for Implementing ISO/IEC 17025 Quality Management Systems at Materials Science Laboratories" (in en), Quality Control and Assurance - An Ancient Greek Term Re-Mastered (InTech), doi:10.5772/66100, ISBN 978-953-51-2921-9, http://www.intechopen.com/books/quality-control-and-assurance-an-ancient-greek-term-re-mastered/key-aspects-for-implementing-iso-iec-17025-quality-management-systems-at-materials-science-laborator. Retrieved 2022-12-20
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 Pillai, Segaran; Calvert, Jennifer; Fox, Elizabeth (3 November 2022). "Practical considerations for laboratories: Implementing a holistic quality management system". Frontiers in Bioengineering and Biotechnology 10: 1040103. doi:10.3389/fbioe.2022.1040103. ISSN 2296-4185. PMC PMC9670165. PMID 36406233. https://www.frontiersin.org/articles/10.3389/fbioe.2022.1040103/full.
- ↑ "Regulatory and Guidance Information by Topic: Water". Environmental Protection Agency. 18 February 2022. https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-topic-water. Retrieved 20 January 2023.
- ↑ Stahl-Figueroa, H. (30 November 2021). "Material Testing and Site Inspections: The Foundation of Successful Construction". Intertek Blog. Intertek Group plc. https://www.intertek.com/blog/2021-11-30-foundation/. Retrieved 20 January 2023.
- ↑ ANAB (30 October 2015). "ISO/IEC 17025 or 17020 for Forensics?". Qualtrax. https://www.qualtrax.com/isoiec-17025-or-17020-for-forensics/. Retrieved 20 January 2023.
- ↑ "The role of accreditation in ensuring sampling quality" (in en). Analytical Methods 11 (26): 3358–3360. 2019. doi:10.1039/C9AY90095K. ISSN 1759-9660. http://xlink.rsc.org/?DOI=C9AY90095K.
- ↑ Glavič-Cindro, Denis; Hazou, Eyakifama; Korun, Matjaž; Krištof, Romana; Osterman, Petra; Petrovič, Toni; Vodenik, Branko; Zorko, Benjamin (1 February 2020). "Measurement uncertainty arising from sampling of environmental samples" (in en). Applied Radiation and Isotopes 156: 108978. doi:10.1016/j.apradiso.2019.108978. https://linkinghub.elsevier.com/retrieve/pii/S0969804319303367.
- ↑ 13.0 13.1 Rao, Dd (2021). "ISO/IEC 17025: Accreditation standard for testing and calibration laboratories" (in en). Radiation Protection and Environment 44 (3): 121. doi:10.4103/rpe.rpe_41_21. ISSN 0972-0464. http://www.rpe.org.in/text.asp?2021/44/3/121/334784.
- ↑ Romero, A. M.; Rodríguez, R.; López, J. L.; Martín, R.; Benavente, J. F. (1 September 2016). "CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY" (in en). Radiation Protection Dosimetry 170 (1-4): 70–73. doi:10.1093/rpd/ncv472. ISSN 0144-8420. https://academic.oup.com/rpd/article-lookup/doi/10.1093/rpd/ncv472.
- ↑ Morling, Niels; Allen, Robert W; Carracedo, Angel; Geada, Helena; Guidet, Francois; Hallenberg, Charlotte; Martin, Wolfgang; Mayr, Wolfgang R et al. (1 October 2002). "Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases" (in en). Forensic Science International 129 (3): 148–157. doi:10.1016/S0379-0738(02)00289-X. https://linkinghub.elsevier.com/retrieve/pii/S037907380200289X.
- ↑ Pierce, Michal L.; Wiersema, Jason M.; Crowder, Christian M. (1 September 2016). "Progress in the Accreditation of Anthropology Laboratories" (in en). Academic Forensic Pathology 6 (3): 344–348. doi:10.23907/2016.036. ISSN 1925-3621. PMC PMC6474551. PMID 31239910. http://journals.sagepub.com/doi/10.23907/2016.036.
- ↑ Dror, Itiel E.; Pierce, Michal L. (1 May 2020). "ISO Standards Addressing Issues of Bias and Impartiality in Forensic Work" (in en). Journal of Forensic Sciences 65 (3): 800–808. doi:10.1111/1556-4029.14265. ISSN 0022-1198. https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.14265.
- ↑ "How Organizations Can Improve Lab Testing Within the R&D Process". Manufacturing.net. 14 June 2017. https://www.manufacturing.net/home/article/13165177/how-organizations-can-improve-lab-testing-within-the-rd-process. Retrieved 20 January 2023.
- ↑ "Plastic and Plumbing Testing and R&D Lab Services". NSF. https://www.nsf.org/testing/lab-testing/plastic-plumbing-testing-rd-lab. Retrieved 20 January 2023.
- ↑ Pirard, C.; Widart, J.; Nguyen, B.K.; Deleuze, C.; Heudt, L.; Haubruge, E.; De Pauw, E.; Focant, J.-F. (1 June 2007). "Development and validation of a multi-residue method for pesticide determination in honey using on-column liquid–liquid extraction and liquid chromatography–tandem mass spectrometry" (in en). Journal of Chromatography A 1152 (1-2): 116–123. doi:10.1016/j.chroma.2007.03.035. https://linkinghub.elsevier.com/retrieve/pii/S002196730700502X.
- ↑ Cortés-Herrera, Carolina; Quirós-Fallas, Silvia; Calderón-Calvo, Eduardo; Cordero-Madrigal, Randall; Jiménez, Laura; Granados-Chinchilla, Fabio; Artavia, Graciela (2021). "Nitrogen/protein and one-step moisture and ash examination in foodstuffs: Validation case analysis using automated combustion and thermogravimetry determination under ISO/IEC 17025 guidelines" (in en). Current Research in Food Science 4: 900–909. doi:10.1016/j.crfs.2021.11.015. PMC PMC8646960. PMID 34927085. https://linkinghub.elsevier.com/retrieve/pii/S2665927121001040.
- ↑ Ducup de Saint Paul, Léa; Ravier, Sylvain; Wortham, Henri; Maupetit, François; Nicolas, Mélanie; Quivet, Etienne (1 November 2021). "Development and validation of a UPLC-MS/MS method for the quantification of isothiazolinones in the composition and emissions from consumer products" (in en). Analytical and Bioanalytical Chemistry 413 (26): 6617–6626. doi:10.1007/s00216-021-03627-7. ISSN 1618-2642. https://link.springer.com/10.1007/s00216-021-03627-7.
- ↑ Barela, Jaroslaw; Firmanty, Krzysztof; Kastek, Mariusz (24 August 2021). "Measurement and Analysis of the Parameters of Modern Long-Range Thermal Imaging Cameras" (in en). Sensors 21 (17): 5700. doi:10.3390/s21175700. ISSN 1424-8220. PMC PMC8434484. PMID 34502589. https://www.mdpi.com/1424-8220/21/17/5700.
- ↑ Wakshlag, Joseph J; Cital, Stephen; Eaton, Scott J; Prussin, Reece; Hudalla, Christopher (1 April 2020). "Cannabinoid, Terpene, and Heavy Metal Analysis of 29 Over-the-Counter Commercial Veterinary Hemp Supplements" (in en). Veterinary Medicine: Research and Reports Volume 11: 45–55. doi:10.2147/VMRR.S248712. ISSN 2230-2034. PMC PMC7169471. PMID 32346530. https://www.dovepress.com/cannabinoid-terpene-and-heavy-metal-analysis-of-29-over-the-counter-co-peer-reviewed-article-VMRR.
- ↑ Perusso, Cristiane Olier; Nagata, Walter Bertequini; Inácio, Sandra Valéria; Castilho, Gilmara; Ferrari, Alessandro Moreira; Gomes, Jancarlo Ferreira; Bresciani, Katia Denise Saraiva (1 August 2022). "Optimizing the quality of research in Veterinary Parasitology" (in en). Experimental Parasitology 239: 108303. doi:10.1016/j.exppara.2022.108303. https://linkinghub.elsevier.com/retrieve/pii/S0014489422000972.
- ↑ Rodima, Ako; Vilbaste, Martin; Saks, Olev; Jakobson, Erko; Koort, Eve; Pihl, Viljar; Sooväli, Lilli; Jalukse, Lauri et al. (1 July 2005). "ISO 17025 quality system in a university environment" (in en). Accreditation and Quality Assurance 10 (7): 369–372. doi:10.1007/s00769-005-0011-x. ISSN 0949-1775. http://link.springer.com/10.1007/s00769-005-0011-x.
- ↑ Separovic, Luciana; Simabukuro, Renan S.; Couto, Aldo R.; Bertanha, Maria Luiza G.; Dias, Francielle R.S.; Sano, Adriano Y.; Caffaro, Arthur M.; Lourenço, Felipe R. (21 June 2021). "Measurement Uncertainty and Conformity Assessment Applied to Drug and Medicine Analyses – A Review" (in en). Critical Reviews in Analytical Chemistry: 1–16. doi:10.1080/10408347.2021.1940086. ISSN 1040-8347. https://www.tandfonline.com/doi/full/10.1080/10408347.2021.1940086.
- ↑ Margham, Jennifer; McAdam, Kevin; Forster, Mark; Liu, Chuan; Wright, Christopher; Mariner, Derek; Proctor, Christopher (17 October 2016). "Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke" (in en). Chemical Research in Toxicology 29 (10): 1662–1678. doi:10.1021/acs.chemrestox.6b00188. ISSN 0893-228X. https://pubs.acs.org/doi/10.1021/acs.chemrestox.6b00188.
- ↑ Czichos, Horst ; Saito, Tetsuya; Smith, Leslie R., ed. (2006). Springer Handbook of Materials Measurement Methods. Springer. p. 83–84. ISBN 3540303006. https://books.google.com/books?id=8lANaR-Pqi4C&pg=PA83. Retrieved 20 January 2023.
- ↑ Siekmann, Lothar (November 2007). "Requirements for Reference (Calibration) Laboratories in Laboratory Medicine" (PDF). The Clinical Biochemist Reviews 28 (4): 149–154. PMC PMC2282407. http://www.ifcc.org/media/147899/LS%20Clin%20Biochem%20Rev%202007_28_149-154.pdf. Retrieved 20 January 2023.
- ↑ "ISO 15195:2018 - Laboratory medicine -- Requirements for the competence of calibration laboratories using reference measurement procedures". International Organization for Standardization. December 2018. https://www.iso.org/standard/69824.html. Retrieved 20 January 2023.
- ↑ Squirrell, A. (1 September 2008). "Conformity assessment: providing confidence in testing and calibration" (in en). Accreditation and Quality Assurance 13 (9): 543–546. doi:10.1007/s00769-008-0418-2. ISSN 0949-1775. http://link.springer.com/10.1007/s00769-008-0418-2.
- ↑ Miguel, Anna; Moreira, Renata; Oliveira, André (2021). "ISO/IEC 17025: HISTORY AND INTRODUCTION OF CONCEPTS". Química Nova. doi:10.21577/0100-4042.20170726. http://quimicanova.sbq.org.br/audiencia_pdf.asp?aid2=9279&nomeArquivo=AG2020-0467.pdf.
- ↑ 34.0 34.1 Vehring, S. (June 2020). "Tested & Accepted: Implementing ISO/IEC 17025:2017" (PDF). United Nations Industrial Development Organization. https://www.unido.org/sites/default/files/files/2020-06/Guide%20ISO%2017025-2017_online.pdf. Retrieved 20 January 2023.
- ↑ United Nations Conference on Trade and Development (17 February 2022). "Global trade hits record high of $28.5 trillion in 2021, but likely to be subdued in 2022". UNCTAD News. https://unctad.org/news/global-trade-hits-record-high-285-trillion-2021-likely-be-subdued-2022. Retrieved 20 January 2023.
- ↑ ANSI (26 December 2017). "ISO/IEC 17025- Competence of testing and calibration laboratories". Industrial Safety & Hygiene News. Archived from the original on 23 September 2019. https://web.archive.org/web/20190923060705/https://www.ishn.com/articles/107811-isoiec-17025--competence-of-testing-and-calibration-laboratories. Retrieved 20 January 2023.
- ↑ Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F (1 February 2010). "Aspectos fundamentales para la acreditación de laboratorios de calibración de equipos médicos en Colombia" (in en). Revista de Salud Pública 12 (1): 126–134. doi:10.1590/S0124-00642010000100012. ISSN 0124-0064. http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S0124-00642010000100012&lng=es&nrm=iso&tlng=es.
- ↑ Lehman, J.H.; Vayshenker, I.; Livigni, D.J.; Hadler, J. (1 March 2004). "Intramural comparison of NIST laser and optical fiber power calibrations". Journal of Research of the National Institute of Standards and Technology 109 (2): 291. doi:10.6028/jres.109.019. PMC PMC4853116. PMID 27366611. https://nvlpubs.nist.gov/nistpubs/jres/109/2/j92leh.pdf.
- ↑ Martucci, Adolfo; Cerasuolo, Giovanni; Petrella, Orsola; Laracca, Marco (21 January 2020). "On the Calibration of GNSS-Based Vehicle Speed Meters" (in en). Sensors 20 (3): 591. doi:10.3390/s20030591. ISSN 1424-8220. PMC PMC7037761. PMID 31973137. https://www.mdpi.com/1424-8220/20/3/591.
- ↑ Asprang, Aud Frøysa; Jenum, Pål A. (6 November 2003). "[What does accreditation of medical microbiological laboratories mean to patients?"]. Tidsskrift for Den Norske Laegeforening: Tidsskrift for Praktisk Medicin, Ny Raekke 123 (21): 3051–3053. ISSN 0807-7096. PMID 14618175. https://pubmed.ncbi.nlm.nih.gov/14618175.
- ↑ Weinmann, Wolfgang; Schaefer, Patrick; Thierauf, Annette; Schreiber, André; Wurst, Friedrich Martin (1 February 2004). "Confirmatory analysis of ethylglucuronide in urine by liquid-chromatography/electrospray ionization/tandem mass spectrometry according to forensic guidelines" (in en). Journal of the American Society for Mass Spectrometry 15 (2): 188–193. doi:10.1016/j.jasms.2003.10.010. ISSN 1044-0305. https://pubs.acs.org/doi/10.1016/j.jasms.2003.10.010.
- ↑ Cay, A.B.; Van Der Stede, Stede Y. (1 December 2010). "Influence of the incubation temperature and the batch components on the sensitivity of an enzyme-linked immunoabsorbent assay to detect Aujeszky's diseaese virus glycoprotein E (gE)". Revue Scientifique et Technique de l'OIE 29 (3): 565–571. doi:10.20506/rst.29.3.2002. ISSN 0253-1933. https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=31143.
- ↑ Gerace, E.; Salomone, A.; Fasano, F.; Costa, R.; Boschi, D.; Di Stilo, A.; Vincenti, M. (1 April 2011). "Validation of a GC/MS method for the detection of two quinolinone-derived selective androgen receptor modulators in doping control analysis" (in en). Analytical and Bioanalytical Chemistry 400 (1): 137–144. doi:10.1007/s00216-010-4569-8. ISSN 1618-2642. http://link.springer.com/10.1007/s00216-010-4569-8.
- ↑ Wilson, Ian G.; Smye, Michael; Wallace, Ian J. C. (1 February 2016). "Meta-audit of laboratory ISO accreditation inspections: measuring the old emperor's clothes". MicrobiologyOpen 5 (1): 95–105. doi:10.1002/mbo3.314. ISSN 2045-8827. PMC 4767433. PMID 26620076. https://pubmed.ncbi.nlm.nih.gov/26620076.
- ↑ "ISO 15189:2022 Medical laboratories — Requirements for quality and competence". International Organization for Standardization. December 2022. https://www.iso.org/standard/76677.html. Retrieved 20 January 2023.
- ↑ Plebani, Mario; Sciacovelli, Laura (1 September 2017). "ISO 15189 Accreditation: Navigation Between Quality Management and Patient Safety". Journal of Medical Biochemistry 36 (3): 225–230. doi:10.1515/jomb-2017-0038. ISSN 1452-8266. PMC PMC6287216. PMID 30564060. https://scindeks.ceon.rs/article.aspx?artid=1452-82581703225P.
- ↑ 47.0 47.1 47.2 47.3 47.4 47.5 47.6 47.7 47.8 World Health Organization (2011). "Laboratory Quality Management System: Handbook" (PDF). World Health Organization. ISBN 9789241548274. http://apps.who.int/iris/bitstream/handle/10665/44665/9789241548274_eng.pdf?sequence=1.
- ↑ National Committee for Clinical Laboratory Standards (November 2004). "CLSI HS01-A2". ANSI. https://webstore.ansi.org/standards/clsi/clsihs01a2.
- ↑ National Committee for Clinical Laboratory Standards (November 2004). "CLSI GP26-A3". ANSI. https://webstore.ansi.org/standards/clsi/clsigp26a3.
- ↑ 50.0 50.1 Clinical and Laboratory Standards Institute (2022). "Quality System Essentials". Clinical and Laboratory Standards Institute. https://clsi.org/standards-development/quality-system-essentials/.
- ↑ "ISO 15189:2012(en) Medical laboratories — Requirements for quality and competence". International Organization for Standardization. November 2012. https://www.iso.org/obp/ui/#iso:std:iso:15189:ed-3:v2:en. Retrieved 20 January 2023.
- ↑ "persistency". Merriam-Webster.com Dictionary. Merriam-Webster, Inc. https://www.merriam-webster.com/dictionary/persistency. Retrieved 20 January 2023.
- ↑ "QMS01 A Quality Management System Model for Laboratory Services, 5th Edition". Clinical and Laboratory Standards Institute. 19 June 2019. https://clsi.org/standards/products/quality-management-systems/documents/qms01/. Retrieved 20 January 2023.
- ↑ Perry Johnson Consulting, Inc (January 2022). "ISO/IEC 17025:2017 Testing and Calibration Laboratories: An Executive Overview" (PDF). https://www.pjcinc.com/Downloads/ISOIEC17025_exov.pdf. Retrieved 20 January 2023.
- ↑ Rao, Dd (2021). "ISO/IEC 17025: Accreditation standard for testing and calibration laboratories" (in en). Radiation Protection and Environment 44 (3): 121. doi:10.4103/rpe.rpe_41_21. ISSN 0972-0464. http://www.rpe.org.in/text.asp?2021/44/3/121/334784.
- ↑ Garber Metrology (14 December 2021). "A Guide to ISO 17025 Calibration and Compliance". Garber Metrology Blog. https://www.garbermetrology.com/iso-17025/. Retrieved 20 January 2023.
- ↑ "What is ISO 17025?". Advisera Expert Solutions Ltd. 2022. https://advisera.com/17025academy/what-is-iso-17025/. Retrieved 20 January 2023.