Difference between revisions of "Journal:Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory"

From LIMSWiki
Jump to navigationJump to search
(Saving and adding more.)
Line 1: Line 1:
{{Infobox journal article
''Italic text''{{Infobox journal article
|name        =  
|name        =  
|image        =  
|image        =  
Line 105: Line 105:
==Results==
==Results==
===Definition of limited range===
===Definition of limited range===
From January 2016 and December 2016, 157,079 historical test results of coagulation profiles were collected. Distribution intervals of clinical large-scale data of coagulation, including the mean, standard deviation, median, and 5% and 95% percentiles, are shown in Table 1.


{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="50%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="10"|'''Table 1.''' Distribution intervals of clinical large-scale data in coagulation<br />''PT'' Prothrombin time, ''APTT'' Activated partial thromboplastin time, ''TT'' Thrombin time, ''FBG'' Fibrinogen
|-
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Assay
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|''n''
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Mean
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Standard<br />deviation
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Median
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Range
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Minimum
  ! style="padding-left:10px; padding-right:10px;" rowspan="2"|Maximum
  ! style="padding-left:10px; padding-right:10px;" colspan="2"|Percentiles
|-
  ! style="padding-left:10px; padding-right:10px;"|5%
  ! style="padding-left:10px; padding-right:10px;"|95%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|PT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|157,097
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.60
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.51
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.10
  | style="background-color:white; padding-left:10px; padding-right:10px;"|109.20
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10.00
  | style="background-color:white; padding-left:10px; padding-right:10px;"|119.20
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.80
  | style="background-color:white; padding-left:10px; padding-right:10px;"|16.30
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|APTT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|157,097
  | style="background-color:white; padding-left:10px; padding-right:10px;"|36.97
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5.76
  | style="background-color:white; padding-left:10px; padding-right:10px;"|36.10
  | style="background-color:white; padding-left:10px; padding-right:10px;"|153.30
  | style="background-color:white; padding-left:10px; padding-right:10px;"|20.80
  | style="background-color:white; padding-left:10px; padding-right:10px;"|174.10
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.40
  | style="background-color:white; padding-left:10px; padding-right:10px;"|46.40
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|TT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|157,097
  | style="background-color:white; padding-left:10px; padding-right:10px;"|17.12
  | style="background-color:white; padding-left:10px; padding-right:10px;"|4.04
  | style="background-color:white; padding-left:10px; padding-right:10px;"|16.80
  | style="background-color:white; padding-left:10px; padding-right:10px;"|216.30
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.00
  | style="background-color:white; padding-left:10px; padding-right:10px;"|229.30
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.00
  | style="background-color:white; padding-left:10px; padding-right:10px;"|19.40
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|FBG
  | style="background-color:white; padding-left:10px; padding-right:10px;"|157,097
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.80
  | style="background-color:white; padding-left:10px; padding-right:10px;"|1.35
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3.50
  | style="background-color:white; padding-left:10px; padding-right:10px;"|12.94
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0.60
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13.54
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.21
  | style="background-color:white; padding-left:10px; padding-right:10px;"|6.51
|-
|}
|}
In this study, we defined the limited range according the intervals of clinical reference intervals, critical range, and 5% and 95% percentiles, and the limited range was 11.00–16.30 s for PT, 30.40–46.40 s for APTT, 14.00–21.00 s for TT, and 2.00–6.51 g/L for FBG, as shown in Table 2.
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="100%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="5"|'''Table 2.''' Clinical reference intervals, critical range, 5 and 95% percentiles, and the limited range<br />''PT'' Prothrombin time, ''APTT'' Activated partial thromboplastin time, ''TT'' Thrombin time, ''FBG'' Fibrinogen
|-
  ! style="padding-left:10px; padding-right:10px;"|Assay
  ! style="padding-left:10px; padding-right:10px;"|Clinical reference intervals
  ! style="padding-left:10px; padding-right:10px;"|Critical value
  ! style="padding-left:10px; padding-right:10px;"|Percentiles (5% and 95%)
  ! style="padding-left:10px; padding-right:10px;"|Limited range
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|PT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.00–14.30 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|≤ 9.00 s or ≥ 70.00 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.80–16.30 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11.00–16.30 s
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|APTT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|32.00–43.00 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|≤ 15.00 s or ≥ 100.00 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.40–46.40 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|30.40–46.40 s
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|TT
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14.0 0–21.00 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|> 150.00 s 
  | style="background-color:white; padding-left:10px; padding-right:10px;"|15.00–19.40 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14.00–21.00 s
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|FBG
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.00–4.00 g/L
  | style="background-color:white; padding-left:10px; padding-right:10px;"|< 1.00 g/L
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.21–6.51 s
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2.00–6.51 g/L
|-
|}
|}
===Validation of the autoverification system===
====Validation of historical records====
In historical data analysis, we evaluated 246 items of historical special abnormal data with high or low concentrations. After running through the autoverification protocols and comparing with the historical reports, all items ended in stopping autoverification and none ended in autoverification. Of the 37,821 historical reports of coagulation profiles from January 2017 to March 2017, 29,165 samples passed the autoverification protocols, indicating that the overall passing rate was 77.11%.
====Validation of initial online test====
The autoverification passing rate, number of samples, cases that passed the autoverification, cases that failed the autoverification, true-positive cases, true-negative cases, false-positive cases, false-negative cases, sensitivity, and specificity in the real-life online test are shown in Table 3. Because coagulation requisition forms in our hospital usually contained PT, APTT, FBG, and TT simultaneously, we evaluated the overall passing rate of the four tests as a whole sample. The overall autoverification passing rate for all of the samples was 77.63% (10,828/13,949) in May 2017. There were five cases that the two reviewers decided to stop for manual verification; however, the autoverification passed them. These cases were considered to be instances of a partial or tiny clot, characterized by PT ≥ 14.00 s or APTT ≥ 43.00 s and FBG ≤ 2.00 g/L, despite being within limited range. After modifying the protocols with logical rules, no false-negative cases occurred, and the passing rate was 78.75% (11,257/14,295) in June 2017.
{|
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="80%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="3"|'''Table 3.''' Validation of the initial online test<br />''True-positive'' intercepted problematic reports, ''True-negative'' auto-released correct reports, ''False-positive'' intercepted correct problematic reports, ''False-negative'' auto-released problematic reports
|-
  ! style="padding-left:10px; padding-right:10px;"|Validation attributes
  ! style="padding-left:10px; padding-right:10px;"|May 2017
  ! style="padding-left:10px; padding-right:10px;"|June 2017
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|''n''
  | style="background-color:white; padding-left:10px; padding-right:10px;"|13,949
  | style="background-color:white; padding-left:10px; padding-right:10px;"|14,295
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Pass
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10,828
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11,257
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Fail
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3121
  | style="background-color:white; padding-left:10px; padding-right:10px;"|3038
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|True-positive
  | style="background-color:white; padding-left:10px; padding-right:10px;"|858
  | style="background-color:white; padding-left:10px; padding-right:10px;"|892
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|True-negative
  | style="background-color:white; padding-left:10px; padding-right:10px;"|10,823
  | style="background-color:white; padding-left:10px; padding-right:10px;"|11,257
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|False-positive
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2263
  | style="background-color:white; padding-left:10px; padding-right:10px;"|2146
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|False-negative
  | style="background-color:white; padding-left:10px; padding-right:10px;"|5
  | style="background-color:white; padding-left:10px; padding-right:10px;"|0
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Sensitivity
  | style="background-color:white; padding-left:10px; padding-right:10px;"|99.42%
  | style="background-color:white; padding-left:10px; padding-right:10px;"|100%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Specificity
  | style="background-color:white; padding-left:10px; padding-right:10px;"|82.71%
  | style="background-color:white; padding-left:10px; padding-right:10px;"|83.99%
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Passing rate
  | style="background-color:white; padding-left:10px; padding-right:10px;"|77.63%
  | style="background-color:white; padding-left:10px; padding-right:10px;"|78.75%
|-
|}
|}
====Validation of the autoverification system====
In July 2017, autoverification was formally introduced, and we observed 83,699 samples from July 2017 to December 2017 to assess the validation. No cases failed the QC check, and approximately 120 items failed analytical error flags per month. Rules of critical value, limited range, and delta check were determined by single tests, and the autoverification passing rate is shown in Table 4.
After modifying the logical rules, the average overall passing rate was 78.86%, and the 95% confidence interval (CI) for the overall passing rate was [78.25, 79.59%]. To compare with other studies, the passing rates of different assays and systems (commercial tools, middleware or LIS) are shown in Table 5.


==References==
==References==

Revision as of 19:05, 1 October 2019

Italic text

Full article title Design and evaluation of a LIS-based autoverification system for coagulation assays in a core clinical laboratory
Journal BMC Medical Informatics and Decision Making
Author(s) Wang, Zhongqing; Peng, Cheng; Kang, Hui; Fan, Xia; Mu, Runqing; Zhou, Liping, He, Miao; Qu, Bo
Author affiliation(s) China Medical University, Affiliated Hospitals of China Medical University
Primary contact Online contact form
Year published 2019
Volume and issue 19(1)
Page(s) 123
DOI 10.1186/s12911-019-0848-2
ISSN 1472-6947
Distribution license Creative Commons Attribution 4.0 International
Website https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-0848-2
Download https://bmcmedinformdecismak.biomedcentral.com/track/pdf/10.1186/s12911-019-0848-2 (PDF)

Abstract

Background: An autoverification system for coagulation consists of a series of rules that allows normal data to be released without manual verification. With new advances in medical informatics, the laboratory information system (LIS) has growing potential for the use of autoverification, allowing rapid and accurate verification of clinical laboratory tests. The purpose of the study is to develop and evaluate a LIS-based autoverification system for validation and efficiency.

Methods: Autoverification decision rules—including quality control, analytical error flag, critical value, limited range check, delta check, and logical check rules, as well as patient’s historical information—were integrated into the LIS. Autoverification limit ranges was constructed based on 5% and 95% percentiles. The four most commonly used coagulation assays—prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FBG)—were followed by the autoverification protocols. The validation was assessed using characteristics such as autoverification passing rate, the true-positive cases, the true-negative cases, the false-positive cases, the false-negative cases, the sensitivity and the specificity. Efficiency was evaluated by turnaround time (TAT).

Results: A total of 157,079 historical test results of coagulation profiles from January 2016 to December 2016 were collected to determine the distribution intervals. The autoverification passing rate was 77.11% (29,165 / 37,821) based on historical patient data. In the initial test of the autoverification version in June 2017, the overall autoverification passing rate for the whole sample was 78.75% (11,257 / 14,295), with 892 true-positive cases, 11,257 true-negative cases, 2,146 false-positive cases, no false-negative cases, sensitivity of 100% ,and specificity of 83.99%. After formal implementation of the autoverification system for six months, 83,699 samples were assessed. The average overall autoverification passing rate for the whole sample was 78.86%, and the 95% confidence interval (CI) of the passing rate was [78.25, 79.59%]. TAT was reduced from 126 minutes to 101 minutes, which was statistically significant (P < 0.001, Mann-Whitney U test).

Conclusions: The LIS-based autoverification system for coagulation assays can halt the samples with abnormal values for manual verification, guarantee medical safety, minimize the requirements for manual work, shorten TAT, and raise working efficiency.

Keywords: laboratory information systems, medical safety, autoverification, coagulation, turnaround time

Background

Following the analytical phase, a large number of manual verifications are performed in clinical laboratories to detect possible errors before results are released to electronic health records (EHRs), which is time-consuming.[1] A significant solution for this issue may be autoverification, a process which uses a set of well-designed rules to identify and flag samples with abnormal values for manual verification, at the same time permitting those with normal values to be released without manual intervention.[2] Previous reports have demonstrated that autoverification can ensure medical safety[3], shorten turnaround time (TAT)[2][3][4][5], reduce labor requirements[2][3][4], improve operational efficiency[2][4][5][6] and minimize error rate[2], as well as enable laboratory technologists to devote more attention to test results that have greater potential for error.[2]

Until recently, those autoverification systems were commonly developed via third-party commercial software or middleware, which are costly, and the autoverification decision rules were proprietary, such that no revision could be made according to user requirements.[7][8][9][10] In addition, they could not connect with a hospital information system (HIS) and obtain comprehensive clinical data, such as a patient’s history and clinical diagnosis. With the rapid progress of laboratory automation today, it is challenging to achieve interconnection and intercommunication between analytical instruments and the laboratory information system (LIS) with the goal of designing laboratory-focused autoverification systems independent of any commercial software.

Coagulation assays are essential for the assessment of patients requiring acute care[11], patients undergoing anticoagulant therapy[12], thrombolytic therapy[13], and pregnancy[14], as well as for the monitoring of disseminated intravascular coagulation.[15] In many laboratories, coagulation assays are currently still released by manual review, verification, and release, and reports about autoverification in coagulation are scarce.[16] The four most routinely used coagulation assays in our laboratory—namely, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FBG)—are commonly prescribed together. As such, an urgent need to automate these assays exists, yet it is still a challenge to establish autoverification decision rules in coagulation that take advantage of quality control (QC) checks, instrument error flags, critical value warnings, limited range checks, delta checks, logical rule requirements, and patients' historical data, all while referencing the Clinical Laboratory Standards Institute (CLSI) guidelines for Autoverification of Clinical Laboratory Test Results (AUTO 10-A).[17] This research extends our knowledge to establish a laboratory-specific autoverification system for coagulation assays based on LIS to ensure medical safety and shorten turnaround time (TAT). Moreover, it is the first study based on clinical large-scale data to evaluate the validation and efficiency of autoverification in terms of specificity and efficiency.

Methods

Setting

The study was conducted in the core clinical laboratory of the First Affiliated Hospital of China Medical University, which processes approximately 3,500,000 various laboratory samples per year. The HIS and the LIS were both provided by Beijing Donghua Software (Beijing, Donghua, China). The autoverification decision rules were converted into computer languages to integrate into the HIS. In the process of autoverification, the values that passed the autoverification protocols were marked in green, and those that failed were flagged in red. When abnormal results were held up, a quick attentive manual verification or re-analysis was needed. If the results were considered to be critical values, they were quickly released to the HIS, and the clinicians were alerted to the abnormalities by a call.

Data collection

Coagulation profiles from outpatients, inpatients, and patients from the physical examination center of our hospital were collected for analysis. Historical values of 157,097 samples between January 2016 and December 2016 were used to determine the 5% and 95% percentiles of PT, APTT, TT and FBG. A total of 37,821 historical records released by manual verification from January 2017 to March 2017 were obtained to test the passing rate of autoverification protocols. In the test version phase, validation of the autoverification protocols was determined by 28,244 samples between May 2017 and June 2017. After the protocols were formally implemented online, 83,699 samples between July 2017 and December 2017 were taken to evaluate the single test autoverification passing rate and the overall autoverification passing rate.

Analytical instruments and reagents

All tests were measured using STA-R Evolution Analyzer (Stago Diagnostica, Brussels, Belgium). Reagents of STA-PTT (APTT), STA-Neoplastin R (PT), STA-TT (TT), STA-Fibrinogen (FBG), and controls were also provided by Stago.

Autoverification decision making

The autoverification system was designed with the (CLSI) guidelines for Autoverification of Clinical Laboratory Test Results (AUTO 10-A) in mind.[17] A technologist-augmented decision-making tree was processed, and if any of the rules were violated, the result was held for manual verification, as shown in Fig. 1. The autoverification steps consisted of quality control (QC) checks, analytical error flags, critical values, limited range checks, delta checks, and logical rules, as well as confirming the patient’s clinical diagnosis. The autoverification protocols ran the single test successively until the four items of the whole sample were finished. If all four items passed the autoverification, the logical rules were run for further verification; if any of the steps violated the rules, manual verification was required. Because the LIS is connected to the HIS in our hospital, any result that passed autoverification was directly released to the patients’ medical records without manual verification.


Fig1 Wang BMCMedInfoDecMak2019 19-1.png

Figure 1. Autoverification decision-making tree. Autoverification procedures for single tests and whole samples in the order of quality control check, analytical error flags, critical values, limited range check, delta check, logical rules and patient’s clinical diagnosis

Quality control check

A quality control (QC) check is routinely performed in our laboratory, transmitting from the analyzer to the LIS according to Westgard quality control multi-rules.[18] The QC check ensured that each test was within the appropriate range before running the autoverification protocols. If there were no QC results within 24 hours or if any QC rule was violated, the program halted all samples being autoverified.

Analytical error flags

If any instrument analytical flag was sent to the LIS along with testing problems, such as the two-dimensional barcode, reagents, and samples, as well as reagent crystallization or sample clots forming, the results were held for later manual verification.

Critical value

The critical values that may threaten the patient’s life and require urgent medical treatment were determined by laboratory technologists and clinicians. The critical values used for autoverification were as follows: PT ≤ 9.00 s or ≥ 70.00 s, APTT ≤ 15.00 s or ≥ 100.00 s, TT > 150.00 s and FBG < 1.00 g/L (as shown later on in Table 2). If critical values were detected, they were manually verified by a skilled laboratory specialist, repeated, and transferred to a critical value list for an immediate phone call to clinicians. The results found to be within the range proceeded to the next steps: limited range check and delta check.

Limited range check

The limited range is a filter to verify if the result is within the extreme reference intervals specified for the assays in the LIS. The clinical reference intervals used in our laboratory were 11.00–14.30 s for PT, 32.00–43.00 s for APTT, 14.00–21.00 s for TT, and 2.00–4.00 g/L for FBG. In clinical practice, PT and TT values greater than 3.00 s and APTT values greater than 100.00 s are considered pathological. However, due to biological variation, clinical reference intervals are not always suitable for autoverification; we therefore analyzed the distribution of 5% and 95% percentiles based on the historical large-scale data from January 2016 to December 2016. In the current study, after discussing with local clinicians, the limited range was determined by a combination of clinical reference intervals, critical value, and 5% and 95% percentiles. The results that were within the limited range continued to the next step.

Delta check

It is widely accepted that test results with historical values should be confirmed by a delta check.[19][20] In our study, delta check was used for the results with historical data and failing the limited check. The delta check was performed to compare present test results with previous results and to identify variations beyond a patient's expected values, such as changes in a patient's clinical condition or specimens with clots present.[20][21][22][23][24] Delta check can be performed using various methods, including the delta difference, delta percent change, rate difference, and rate percent difference.[22][25][26] In the present study, delta differences were calculated as the difference between the value of the present results and the previous results. Meanwhile, different tests correspond to different delta differences and time intervals due to biological and pathological functions of coagulation assays. The delta check rules were as follows: PT < 10.00 s and the time interval < 10 days; APTT < 10.00 s and the time interval < 7 days; FBG < 1.00 g/L and the time interval < 3 days. However, if the patient was undergoing anticoagulant therapy, the time interval was < 30 days, and the international normalized ratio (INR) was between 2 and 3.

Logical rules

Based on clinical and practical diagnostic criteria, a few tests may have some necessary logical interrelationships between each testing item, e.g., prolonged PT and APTT associated with a decreased FBG. Logical rules were applied with the condition that all single tests passed the QC check, analytical error flags, critical value check, limited range check, and delta check. If any result violated the logical rules, the autoverification protocols were stopped and the results were reviewed manually before being sent to the HIS. During the logical check, even though the single results were within the limited range, the reports were held for manual verification when the following occurred: PT ≥ 14.00 s or APTT ≥ 43.00 s and FBG ≤ 2.00 g/L; PT ≥ 14.00 s and APTT ≥ 43.00 s; or APTT ≤ 43.00 s, PT ≤ 14.00 s, and TT ≥ 21.00 s. By logical rules, a presence of clot was avoided.

Patient’s clinical diagnosis and historical data

Because it is of great significance for us to design precise and customized rules that work for inpatients and outpatients, patient-specific information—such as gender, age, clinical presentation, medical treatment history, drug history, pregnancy, and other conditions that may affect the results of coagulation assays—should be comprehensively considered. Adjustment of the limited range was done according to clinical diagnosis and historical data. For instance, for patients taking Warfarin, the limited range was PT > 40.00 s, and the allowable ranges for INR were as follows: 1.50–2.50 before non-hip surgery, 2.00–3.00 before hip surgery, 2.00–3.00 for deep vein thrombosis, 2.00–4.00 for treatment of pulmonary infarction, 3.00–4.00 for prevention of arterial thrombosis, and 3.00–4.00 for valve prosthesis surgery. For patients receiving heparin treatment, the limited range was APPT > 90.00 s. If the patient was undergoing anticoagulation therapy, even though the test result of PT was within the routine limited range rather than within the customized limited range, the report would be stopped for manual autoverification and would not be sent to the HIS. For late pregnancy, the upper limit intervals for PT and APTT were decreased by 10%, and the lower limited range for FBG was increased by 10%.[14] For patients undergoing thrombolytic therapy, the limited range for FBG was defined as 1.20–4.00 g/L.

Assessment of the validation of the autoverification system

====Assessment of the historical records test According to CLSI's AUTO 10-A guidance, all rules and settings were required to be validated and thoroughly tested before the autoverification protocols were implemented in a real-life clinical environment. First, we used historical clinical laboratory records stored in the LIS to verify the validation. To test if the program would screen the results outside the autoverification decision rules, special abnormal cases were chosen to test whether or not the autoverification program could be held up. Second, the autoverification passing rate of historical records in the LIS from January 2017 to March 2017 was determined to test if the autoverification protocols followed the rules as expected and to detect potential problems with the program.

Assessment of the initial online test version and autoverification system

Subsequently, the initial online test version program was run in a real-life environment to verify the actual validation in May 2017. In the test version phase, the autoverification decision rules were programmed in other computers, and the autoverification reports were not sent to the HIS. Meanwhile, a laboratory technologist and a skilled laboratory specialist (professor in the core clinical laboratory) manually verified and revised all routine cases and then released reports to HIS as before. Comparisons were accomplished as follows: the number of samples, cases that passed the autoverification, cases that failed the autoverification, the true-positive cases (intercepted problematic reports), the true-negative cases (auto-released correct reports), the false-positive cases (intercepted correct problematic reports), the false-negative cases (auto-released problematic reports), the sensitivity, the specificity, and the autoverification passing rate. After initial online testing for one month, false-negative cases were found due to a tiny or partial clot that was not detected by the instrument. Thus, logical rules were modified to eliminate the false-negative rate in June 2017. Finally, after running and modifying the test version, the false-negative rate was zero, and the program was formally connected online with the LIS in July 2017. The results of all of the samples that passed all the autoverification decision rules were then directly released from the LIS to the HIS without manual verification.

Assessment of the efficiency of the autoverification system

In the current study, TAT was measured by two means, namely TAT 1 and TAT 2. TAT 1 is defined as the interval from the sample receipt by the laboratory to the release of the results on the LIS, while TAT 2 is defined as the interval from the complete analysis by the instruments to the report verification on LIS. Both TAT 1 and TAT 2 were compared with the corresponding previous months.

Statistical analysis

Data were analyzed using IBM SPSS statistics software, version 23.0 (SPSS Inc., Chicago, USA). The Mann-Whitney U test was used for independent sample analysis. A P < 0.05 was considered significant.

Results

Definition of limited range

From January 2016 and December 2016, 157,079 historical test results of coagulation profiles were collected. Distribution intervals of clinical large-scale data of coagulation, including the mean, standard deviation, median, and 5% and 95% percentiles, are shown in Table 1.

Table 1. Distribution intervals of clinical large-scale data in coagulation
PT Prothrombin time, APTT Activated partial thromboplastin time, TT Thrombin time, FBG Fibrinogen
Assay n Mean Standard
deviation
Median Range Minimum Maximum Percentiles
5% 95%
PT 157,097 13.60 2.51 13.10 109.20 10.00 119.20 11.80 16.30
APTT 157,097 36.97 5.76 36.10 153.30 20.80 174.10 30.40 46.40
TT 157,097 17.12 4.04 16.80 216.30 13.00 229.30 15.00 19.40
FBG 157,097 3.80 1.35 3.50 12.94 0.60 13.54 2.21 6.51

In this study, we defined the limited range according the intervals of clinical reference intervals, critical range, and 5% and 95% percentiles, and the limited range was 11.00–16.30 s for PT, 30.40–46.40 s for APTT, 14.00–21.00 s for TT, and 2.00–6.51 g/L for FBG, as shown in Table 2.

Table 2. Clinical reference intervals, critical range, 5 and 95% percentiles, and the limited range
PT Prothrombin time, APTT Activated partial thromboplastin time, TT Thrombin time, FBG Fibrinogen
Assay Clinical reference intervals Critical value Percentiles (5% and 95%) Limited range
PT 11.00–14.30 s ≤ 9.00 s or ≥ 70.00 s 11.80–16.30 s 11.00–16.30 s
APTT 32.00–43.00 s ≤ 15.00 s or ≥ 100.00 s 30.40–46.40 s 30.40–46.40 s
TT 14.0 0–21.00 s > 150.00 s  15.00–19.40 s 14.00–21.00 s
FBG 2.00–4.00 g/L < 1.00 g/L 2.21–6.51 s 2.00–6.51 g/L

Validation of the autoverification system

Validation of historical records

In historical data analysis, we evaluated 246 items of historical special abnormal data with high or low concentrations. After running through the autoverification protocols and comparing with the historical reports, all items ended in stopping autoverification and none ended in autoverification. Of the 37,821 historical reports of coagulation profiles from January 2017 to March 2017, 29,165 samples passed the autoverification protocols, indicating that the overall passing rate was 77.11%.

Validation of initial online test

The autoverification passing rate, number of samples, cases that passed the autoverification, cases that failed the autoverification, true-positive cases, true-negative cases, false-positive cases, false-negative cases, sensitivity, and specificity in the real-life online test are shown in Table 3. Because coagulation requisition forms in our hospital usually contained PT, APTT, FBG, and TT simultaneously, we evaluated the overall passing rate of the four tests as a whole sample. The overall autoverification passing rate for all of the samples was 77.63% (10,828/13,949) in May 2017. There were five cases that the two reviewers decided to stop for manual verification; however, the autoverification passed them. These cases were considered to be instances of a partial or tiny clot, characterized by PT ≥ 14.00 s or APTT ≥ 43.00 s and FBG ≤ 2.00 g/L, despite being within limited range. After modifying the protocols with logical rules, no false-negative cases occurred, and the passing rate was 78.75% (11,257/14,295) in June 2017.

Table 3. Validation of the initial online test
True-positive intercepted problematic reports, True-negative auto-released correct reports, False-positive intercepted correct problematic reports, False-negative auto-released problematic reports
Validation attributes May 2017 June 2017
n 13,949 14,295
Pass 10,828 11,257
Fail 3121 3038
True-positive 858 892
True-negative 10,823 11,257
False-positive 2263 2146
False-negative 5 0
Sensitivity 99.42% 100%
Specificity 82.71% 83.99%
Passing rate 77.63% 78.75%

Validation of the autoverification system

In July 2017, autoverification was formally introduced, and we observed 83,699 samples from July 2017 to December 2017 to assess the validation. No cases failed the QC check, and approximately 120 items failed analytical error flags per month. Rules of critical value, limited range, and delta check were determined by single tests, and the autoverification passing rate is shown in Table 4.


After modifying the logical rules, the average overall passing rate was 78.86%, and the 95% confidence interval (CI) for the overall passing rate was [78.25, 79.59%]. To compare with other studies, the passing rates of different assays and systems (commercial tools, middleware or LIS) are shown in Table 5.

References

  1. Panteghini, M. (2004). "The future of laboratory medicine: understanding the new pressures". The Clinical Biochemist Reviews 25 (4): 207–15. PMC PMC1934959. PMID 18458714. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934959. 
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Torke, N.; Boral, L.; Nguyen, T. et al. (2005). "Process improvement and operational efficiency through test result autoverification". Clinical Chemistry 51 (12): 2406–8. doi:10.1373/clinchem.2005.054395. PMID 16306113. 
  3. 3.0 3.1 3.2 Wu, J.; Pan, M.; Ouyang, H. et al. (2018). "Establishing and Evaluating Autoverification Rules with Intelligent Guidelines for Arterial Blood Gas Analysis in a Clinical Laboratory". SLAS Technology 23 (6): 631–40. doi:10.1177/2472630318775311. PMID 29787327. 
  4. 4.0 4.1 4.2 Li, J.; Cheng, B.; Ouyang, H. et al. (2018). "Designing and evaluating autoverification rules for thyroid function profiles and sex hormone tests". Annals of Clinical Biochemistry 55 (2): 254-263. doi:10.1177/0004563217712291. PMID 28490181. 
  5. 5.0 5.1 Sediq, A.M.; Abdel-Azeez, A.G. (2014). "Designing an autoverification system in Zagazig University Hospitals Laboratories: Preliminary evaluation on thyroid function profile". Annals of Saudi Medicine 34 (5): 427–32. doi:10.5144/0256-4947.2014.427. PMC PMC6074554. PMID 25827700. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074554. 
  6. Randell, E.W.; Short, G.; Lee, N. et al. (2018). "Strategy for 90% autoverification of clinical chemistry and immunoassay test results using six sigma process improvement". Data in Brief 18: 1740-1749. doi:10.1016/j.dib.2018.04.080. PMC PMC5998219. PMID 29904674. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998219. 
  7. Jones, J.B. (2013). "A strategic informatics approach to autoverification". Clinics in Laboratory Medicine 33 (1): 161–81. doi:10.1016/j.cll.2012.11.004. PMID 23331736. 
  8. Randell, E.W.; Short, G.; Lee, N. et al. (2018). "Autoverification process improvement by Six Sigma approach: Clinical chemistry & immunoassay". Clinical Biochemistry 55: 42–48. doi:10.1016/j.clinbiochem.2018.03.002. PMID 29518383. 
  9. Gómez-Rioja, R.; Alvarez, V.; Ventura, M. et al. (2013). "Current status of verification practices in clinical biochemistry in Spain". Clinical Chemistry and Laboratory Medicine 51: 1739-46. doi:10.1515/cclm-2012-0659. PMID 23612663. 
  10. Li, J.; Cheng, B.; Yang, L. et al. (2016). "Development and Implementation of Autoverification Rules for ELISA Results of HBV Serological Markers". Journal of Laboratory Automation 21: 642-51. doi:10.1177/2211068215601612. PMID 26311059. 
  11. Marsden, N.J.; Van, M.; Dean, S. et al. (2017). "Measuring coagulation in burns: An evidence-based systematic review". Scars, Burns & Healing 3: 2059513117728201. doi:10.1177/2059513117728201. PMC PMC5965330. PMID 29799542. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965330. 
  12. Barr, D.; Epps, Q.J. (2019). "Direct oral anticoagulants: A review of common medication errors". Journal of Thrombosis and Thrombolysis 47 (1): 146-154. doi:10.1007/s11239-018-1752-9. PMID 30298305. 
  13. Favaloro, E.J. (2017). "Optimizing the Verification of Mean Normal Prothrombin Time (MNPT) and International Sensitivity Index (ISI) for Accurate Conversion of Prothrombin Time (PT) to International Normalized Ratio (INR)". Methods in Molecular Biology 1646: 59–74. doi:10.1007/978-1-4939-7196-1_4. PMID 28804818. 
  14. 14.0 14.1 Gutiérrez García, I.; Pérez Cañadas, P.; Martínez Uriarte, J. et al. (2018). "D-dimer during pregnancy: establishing trimester-specific reference intervals". Scandinavian Journal of Clinical and Laboratory Investigation 78 (6): 439–42. doi:10.1080/00365513.2018.1488177. PMID 29975107. 
  15. Papageorgiou, C.; Jourdi, G.; Adjambri, E. et al. (2018). "Disseminated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies". Clinical and Applied Thromosis/Hemostasis 24 (9): 8S–28S. doi:10.1177/1076029618806424. PMC PMC6710154. PMID 30296833. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710154. 
  16. Zhao, Y.; Yang, L.; Zheng, G. et al. (2014). "Building and evaluating the autoverification of coagulation items in the laboratory information system". Clinical Laboratory 60 (1): 143–50. doi:10.1177/1076029618806424. PMID 24600989. 
  17. 17.0 17.1 "Autoverification of Clinical Laboratory Test Results, 1st Edition". AUTO10. Clinical Laboratory Standards Institute. 31 October 2006. https://clsi.org/standards/products/automation-and-informatics/documents/auto10/. 
  18. Westgard, J.O. (2003). "Internal quality control: Planning and implementation strategies". Annals of Clinical Biochemistry 40 (Pt 6): 593–611. doi:10.1258/000456303770367199. PMID 14629798. 
  19. Ovens, K.; Naugler, C. (2012). "How useful are delta checks in the 21 century? A stochastic-dynamic model of specimen mix-up and detection". Journal of Pathology Informatics 3: 5. doi:10.4103/2153-3539.93402. PMC PMC3307229. PMID 22439125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307229. 
  20. 20.0 20.1 Randell, E.W.; Yenice, S. (2019). "Delta Checks in the clinical laboratory". Critical Reviews in Clinical Laboratory Sciences 56 (2): 75-97. doi:10.1080/10408363.2018.1540536. PMID 30632840. 
  21. Garner, A.E.; Lewington, A.J.; Barth, J.H. (2012). "Detection of patients with acute kidney injury by the clinical laboratory using rises in serum creatinine: Comparison of proposed definitions and a laboratory delta check". Annals of Clinical Biochemistry 49 (Pt 1): 59–62. doi:10.1258/acb.2011.011125. PMID 22130632. 
  22. 22.0 22.1 Park, S.H.; Kim, S.Y.; Lee, W. et al. (2012). "New decision criteria for selecting delta check methods based on the ratio of the delta difference to the width of the reference range can be generally applicable for each clinical chemistry test item". Annals of Laboratory Medicine 32 (5): 345–54. doi:10.3343/alm.2012.32.5.345. PMC PMC3427822. PMID 22950070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427822. 
  23. Strathmann, F.G.; Baird, G.S.; Hoffman, N.G. (2011). "Simulations of delta check rule performance to detect specimen mislabeling using historical laboratory data". Clinical Chimica Acta 412 (21–22): 1973-7. doi:10.1016/j.cca.2011.07.007. PMID 21782806. 
  24. Yamashita, T.; Ichihara, K.; Miyamoto, A. (2013). "A novel weighted cumulative delta-check method for highly sensitive detection of specimen mix-up in the clinical laboratory". Clinical Chemistry and Laboratory Medicine 51 (4): 781–9. doi:10.1515/cclm-2012-0752. PMID 23388451. 
  25. Tran, D.V.; Cembrowski, G.S.; Lee, T. et al. (2008). "Application of 3-D Delta check graphs to HbA1c quality control and HbA1c utilization". American Journal of Clinical Pathology 130 (2): 292-8. doi:10.1309/VM6FVF6GGCYYJ9BV. PMID 18628100. 
  26. Lacher, D.A.; Connelly, D.P. (1988). "Rate and delta checks compared for selected chemistry tests". Clinical Chemistry 34 (10): 1966–70. PMID 3168205. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation and grammar, for clarity. In some cases important information was missing from the references, and that information was added.