Difference between revisions of "ELN feature"

From LIMSWiki
Jump to navigationJump to search
(→‎Experiment, collaboration, and data management: Finished updating this section.)
(→‎Quality, security, and compliance: Updated the first two entries. More to edit.)
Line 213: Line 213:
===Regulatory compliance===
===Regulatory compliance===


The topic of whether or not a LIMS meets regulatory compliance is often a complex one. While Title [[21 CFR Part 11]] has arguably had the largest influence on a electronic data management system's compliance, other influential standards have shaped the way LIMS and other systems handle and store data. Other compliance-based codes, standards, and regulations include:
The topic of whether or not an ELN meets regulatory compliance is often a complex one. While Title [[21 CFR Part 11]] has arguably had the largest influence on an electronic data management system's compliance, other influential standards have shaped the way laboratory informatics systems handle and store data.<ref name="LTELNCompPDF">{{cite web |url=http://www.vialis.ch/fileadmin/files/imgs/pdf/Newsletter/q2-09/ELN_LAB.pdf |title=ELN Reduces Regulatory Compliance
Costs |publisher=Labtronics Inc |date=January 2005 |format=PDF |accessdate=12 February 2013}}</ref><ref name="KMHowELN">{{cite web |url=http://www.kinematik.com/blog/bid/207452/How-an-ELN-Mitigates-the-Risks-Associated-with-Regulatory-Compliance |title=How an ELN Mitigates the Risks Associated with Regulatory Compliance |author=Price, Michael |publisher=KineMatik Ltd |date=17 August 2012 |accessdate=12 February 2013}}</ref><ref name="BioITNewELNS" /> Other compliance-based codes, standards, and regulations include:


* [[ASTM International|ASTM]]  
* [[ASTM International|ASTM]]  
Line 229: Line 230:
* Title [[40 CFR Part 3]]
* Title [[40 CFR Part 3]]


With so many codes, standards, and regulations, LIMS consumers are advised to contact vendors with their user requirements and ask how the vendor's software meets and/or exceeds those requirements.
With so many codes, standards, and regulations, ELN consumers are advised to contact vendors with their user requirements and ask how the vendor's software meets and/or exceeds those requirements.


===QA/QC functions===
===QA/QC functions===


The quality management functions of a LIMS allow users to maintain a level of necessary quality across many of the functions in a laboratory. From running quality assurance tests to ensuring employed researchers are proficient at certain tasks, the QA/QC functionality of a LIMS is largely responsible for the output of consistent data and manufactured products in and out of the lab.
The quality management functions of an ELN allow users to maintain a level of necessary quality across many of the functions in a laboratory. However, traditionally ELNs have been the domain of research and development (R&D) functions, in the process not giving much consideration to the needs of quality assurance and quality control (QA/QC) laboratories. Where R&D labs need flexibility and freedom, QA/QC labs require more structure in their ELN software.<ref name="ChemBioArtQA">{{cite web |url=http://chembionews.cambridgesoft.com/Articles/Default.aspx?articleID=740 |archiveurl=http://web.archive.org/web/20110722165349/http://chembionews.cambridgesoft.com/Articles/Default.aspx?articleID=740 |title=Why doesn’t a Traditional Electronic Laboratory Notebook work in a QA/QC lab? - ELN Requirements for Quality Assurance and Quality Control |author=Bolton, Steve |publisher=CambridgeSoft Corporation |archivedate=22 July 2011 |accessdate=12 February 2013}}</ref><ref name="WhyDoesn'tArt">{{cite journal |url=http://connection.ebscohost.com/c/articles/18473960/why-doesnt-traditional-electronic-laboratory-notebook-work-qa-qc-lab |title=Why Doesn't a Traditional Electronic Laboratory Notebook Work in a QA/QC Lab? |author=Pavlis, Robert |journal=Scientific Computing & Instrumentation |volume=22 |issue=10 |year=September 2005 |page=31}}</ref>


Common functionality includes<ref name="AL3218">{{cite journal |journal=American Laboratory |year=2000 |volume=32 |issue=18 |pages=38–42 |title=Considerations in selecting a laboratory information management system (LIMS) |author=Paszko, Christine; Carol Pugsley |doi=10.1016/0169-7439(94)90006-X |url=http://www.mendeley.com/research/considerations-selecting-laboratory-information-management-system-lims/}}</ref><ref name="CCHTS1409">{{cite journal |journal=Combinatorial Chemistry & High Throughput Screening |year=2011 |volume=14 |issue=9 |pages=772–780 |title=Tracking and Controlling Everything that Affects Quality is the Key to a Quality Management System |author=Hull, Carl; Bruce Wray; Ford Winslow; Mark Vilicich |doi=10.2174/138620711796957125 |url=http://www.uniconnect.com/wp-content/uploads/2011/11/CCHTS-LIMS-Article.pdf |format=PDF}}</ref>:
* single or batch QA/QC tests
* quality control charts and reports
* proficiency testing
* [[LIMS feature#Document management|document management]]
* instrument maintenance
* data acceptance/rejection
* certificates of analysis (COA)
* data types defined by QC analysis


===Performance evaluation===
===Performance evaluation===

Revision as of 22:53, 12 February 2013

ELNs are designed to supplement or replace laboratory notebooks like these, often adding additional operational functionality in the process.

An ELN feature is one or more pieces of functionality that appear within an electronic laboratory notebook (ELN).

The ELN is an evolving concept, with new features and abilities being introduced every year. As laboratory demands change and technological progress continues, the functions of an ELN will also change. Yet like the dishwasher, the ELN tends to have a base set of functionality that defines it.

Electronic laboratory notebooks extend the functionality and efficiency of four central aspects of the researcher's activities[1]:

  • recording experimental and other types of research data
  • providing organized and searchable structure to that data
  • allowing the sharing of that data through collaborations or with internal or external individuals
  • communicating with others about that data and research

Of course, there are ELN features that are difficult to categorize under any of these activities. Such features often contribute to the entire ELN and how it's utilized. For example, multilingual support allows users to interact with the ELN in more than one language. Some functionality may also overlap several research phases, making it difficult to firmly classify.

The features described below come from an analysis of freely available ELN product information on vendor websites. An attempt was made to discover the features most utilized in vendors' ELN products and collect information on those features for each ELN. Not every possible feature is referenced here; some ELN products fill specific niches, utilizing unique functionality to solve a specific problem.

That said, keep in mind the categorization of features below is very loose. It may be viable to argue a feature belongs under a different section or multiple sections. For the purposes of organizing this information in an uncomplicated manner, however, some liberty has been taken in the categorizing of features.

Experiment, collaboration, and data management

To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.

 

Chemical drawing and calculation

Chemical and/or spectrum file support

Reagents database

Task and event scheduling

Within the context of an ELN, the ability to schedule a task or event is a natural extension of how work was done in a laboratory before the advent of data management systems. Experiments are assigned to technicians, maintenance schedules are created and followed, and research deadlines must be observed. While these tasks have in the past been performed without ELN, a modern data management system can now optimize those tasks and provide additional scheduling functionality to streamline the operation of a lab. Some ELNs like Labtronics Inc.'s Nexxis ELN can schedule due dates on worksheets and experiments.[2] Additional functionality within this feature group includes the ability to configure automated assignments of experiment requests, establish recurring events, and in most cases, create printable reports.

Examples of tasks and events that can feasibly be scheduled in an ELN include:

  • production of reports
  • creation and sending of e-mails and alerts
  • maintenance of equipment
  • assignment of experiments to personnel

Option for manual result entry

While many ELN vendors tout the ability of their product to automate the entry of experiment results into the ELN database, the need for manual data entry of analysis results still exists. This feature is important to laboratories obtaining analysis results from multiple sources, including non-digital paper-based results and instruments that can't be connected to the ELN. Additional functionality associated with this feature includes a customizable spell check dictionary and the ability to add comments, notes, and narratives to most anything in the ELN.

Multiple data viewing methods

Researchers produce reams of data, and the ELN exists to help organize and share that data. Additionally, even before the existence of the ELN, scientists have had a corresponding need for visually representing data. Today an ELN can not only collect and analyze data from experiments, but it also can represent that data in reports, graphs, gradients, and spreadsheets. Depending on the ELN, more than one way to visually represent the data may exist.

The ELN is particularly useful for displaying chemical structures and bonds in more than one way through built-in or integratable chemical structure drawing tools or through a document manager that can handle the placement of screenshots, sketches, or other images.

Configurable templates and forms

Data and trend analysis

Some ELNs allow users to analyze experiment data with built-in software tools.
Sample experimentation and analysis plays an important part of laboratory informatics, helping laboratories make better sense of their experiments and reach valuable conclusions about them. While this important phase of laboratory work has often been done externally from the ELN, it's now more common to see basic analysis tools being included. Such tools allow raw data to be imported directly to the ELN, which then can store, process, and display it in a shareable form. Additionally, chemical calculations and functions used in the analysis are typically definable and editable for further flexibility.

As with the feature "multiple data viewing methods," data and trend analysis is also increasingly important in laboratories that have very specialized data management needs. When even in 2009 genetic scientists in large- and medium-sized sequencing and core centers were voicing concerns about "a lack of adequate vendor-supported software and laboratory information management systems (LIMS),"[3], today data management options like Scilligence ELN are starting to emerge, offering the ability to perform specialized analytical tasks for the researcher.[4]

As sample experimentation and data analysis are important parts of most if not all laboratories, such functionality — which has often come in the form of a separate application or analysis device — will likely continue to merge into software like ELN, LIMS, and other laboratory informatics solutions.[5]

Data and equipment sharing

Aside from data storage and sample registration, a modern ELN's major contribution to the laboratory is both in aiding in the sharing of experiment results, reports, and other research data with those who need it most and the documentation of vital evidence for potential patent interference cases. Rather than pieces of information becoming misplaced or forgotten in physical laboratory notebooks, the ELN makes it easier to share experiment results and increase the efficiency of collaboration inside and outside the laboratory. Yet data is more than just test results; it also can come in the form of charts, reports, policy and procedure, and other documents. Additionally, the need for controlling who has access to those types of data is also an important consideration. As such, this feature is at least partially tied to other features like document management and configurable security.

Customizable fields and/or interface

As thorough as some user interface (UI) developers may be in adding relevant fields and interface options for eln end users, there are at times options that are either omitted or unanticipated. This has traditionally required the end user to contact the vendor and ask if the needed option(s) can be added in the next release. However, many modern ELN vendors have responded instead by adding functionality that gives end users and/or ELN administrators more control over the user interface.

Aspects of the ELN's user interface that are often customizable by the end user include:

  • notebook interface and display
  • chemical drawing methods and display
  • sharing options

Query capability

An ELN's query tools may be as simple as looking up demographic data or finding specific strings of characters in research data.
As was the case before the advent of databases and electronic data management solutions, today researchers must search through experiment results, notes, and other types of data to better draw conclusions about their research. Whereas this used to mean browsing through laboratory notebooks, Excel spreadsheets, or Access databases, now powerful query tools exists within data management tools like ELN and LIMS. Not only can data be searched for based on name, number, or vendor, ELNs like ChemBytes' Espresso ELN allow for advanced queries of molecular patterns and properties associated with the SMARTS language.[6]

Query functionality often includes the ability to:

  • search both transactional data and archived data tables
  • search multiple databases via an application programming interface (API) or open database connectivity (ODBC) connection
  • filter and sort data
  • create ad-hoc queries

Import data

Data can originate from numerous places in the laboratory. The ability to import that data into an ELN can be beneficial, especially when an instrument can't be connected or external clients collaborating on a project need to submit relevant data. Of course instrument interfacing allows for even more importation options. Additional data validation procedures may be applied to the imported data to guarantee information homogeneity. Additionally, some ELN may allow for the importation of other application data in other formats, including XML data like in Agilent's OpenLAB ELN.[7]

Internal file or data linking

This feature allows research collaborators using an ELN to link together experiments, reports, protocols, results, and more, providing greater contextual clarity to projects. Examples include:

  • linking a sample batch to an experiment or sample preparation methodology
  • linking a test process to a particular experiment
  • linking a report to a sample batch
  • linking a group of experiment results to a raw data file
  • linking multiple images to a notebook entry
  • linking all experiment results with the correct reporting test methods

External file or data linking

This feature allows research collaborators using an ELN to link together data and files housed in the database with data, files, and customers outside the ELN's servers. Examples include:

  • linking to external research data sources hosted on the Internet[8]
  • linking external data sources with internal laboratory execution methods[9]
  • linking an ELN to an external LIMS or other laboratory informatics solution[10]

Export to MS Excel

While Microsoft Excel has long been used within the laboratory setting, a slow shift towards relational databases and LIMS occurred in the late 1990s and early 2000s.[11] Additional concerns with the difficulties of Excel's validation and compliance with FDA 21 CFR Part 11 and other regulations have led many labs to turn to data management solutions that are easier to validate.[12] Nevertheless, laboratories continue to use Excel in some fashion, and thus Excel integration or data exportation in Excel format is a real need for ELN customers. ELNs with this feature allow raw, processed, or imported data to be exported in the Excel format for further analysis and dissemination elsewhere in the ELN or externally from it.

Raw data management

While not described as a feature on most ELN vendor websites, a few indicate that their notebooks are capable of managing (import, export, editing, etc.) data in its raw format for future analysis and dissemination.

Data warehouse

An ELN's data warehouse serves the important function of storing, extracting, and managing the data that laboratories produce for the purposes or analysis, reporting, and process management, typically separate from the primary storage database. Data warehouses also offer the benefit of speeding up queries, making queries and data mining more user-friendly, and smoothing out data gaps.[13]

Project and task management

Project and task management within an ELN typically involves the scheduling of tasks to researchers and organizing associated tasks into a more cohesive unit for better tracking and management. While the functionality of task and event scheduling can also be found in project and task management, many ELNs include functionality beyond scheduling that warrants the addition of the project and/or task management feature. This functionality includes:

  • job allocation and rescheduling
  • instrument workload tracking
  • pending workload verification
  • project- and experiment-based workflow management
  • sample, batch, and document linking
  • work template sharing
  • recurring event management

See also: Experiment management

Inventory management

ELNs can assist researchers not only allocate reagents to particular experiments or stations but also track available quantities for future experiments.
Laboratories use a wide array of inventory, from reagents to glassware, from radiopharmaceuticals to laboratory baths. With that comes the need to know how much/many and the frequency of use. For this, some ELN products now include limited or full-featured inventory management functionality, which may include the ability to:
  • register the origin and demographics of incoming materials
  • track used and in-use items via barcodes
  • track inventory reduction based on usage and shipping out of the lab
  • create alerts for when items reach a certain stock level
  • calculate inventory cost and fluctuation
  • manage transportation and routing
  • manual incrementing/decrementing of items
  • track location and usage of laboratory equipment
  • assign storage locations
  • track forensic evidence

It should be noted electronic equipment may also be considered inventory, and thus there is likely some functionality crossover with instrument management features.

Document creation and management

Standard operation procedures, (SOPs), specifications, reports, graphs, images, and receipts are all collected and used in the average laboratory. With an ELN already designed to reference and store experiment data of all types, it makes sense to include functionality to create, import, export, and manage other sorts of data files. As experimental data can be indexed, queried, and linked, so too can document data. Functionality of a typical document management system includes the ability to:

  • upload and index documents
  • add images and photos inline to a notebook entry
  • enforce version control
  • provide full text searches
  • export to PDF, XML, or other relevant formats
  • add documents as attachments

Lab and group management

Experiment management

Workflow management

Capturing workflow in the lab is becoming more commonplace for laboratory informatics products.
Workflow management is common in the laboratory, acting as a graphical representation of planned sequential steps to either automate or clarify a process or experiment within the lab. Separate standards-based workflow management systems (in the form of a software component) have traditionally performed this task.[14] However, in the 2000s vendors began incorporating workflow management functionality into their laboratory informatics software, reducing customization headaches in the process.[15]

Modern commercial and open-source ELN solutions often feature workflow management functionality, including[16][17][8][10]:

  • managing the request cycle within a laboratory
  • executing and review ELN workflow validations
  • managing specific chemistry- and biology-related procedures
  • creating and assigning unstructured experiment documentation
  • defining activity attributes
  • setting of quality control limits
  • dynamically modifying workflow in case of future changes
  • receiving notification of changes to the workflow

Customer and supplier management

Unless a laboratory is conducting internalized independent research, in most cases it will do business with external entities such as contract labs, sample providers, equipment providers, and reagent suppliers. In some cases, even internal employees may be considered a customer, necessitating documentation of who is using the system and in what ways. For a veterinary lab, the customer may be the animal and handler. For a forensic lab the customer may be more complex: internal staff, university staff, police departments, and maintainers of nationwide crime databases may all at some point act as customers. In these cases, documenting these various points of contact and linking them to experiments, equipment, and tests becomes vital. Managing demographics, complaints, correspondence, and history are all feasible with customer management functionality. This process is often made simpler through the use of a more context-neutral entity creation system, which allows for more flexible management of contacts.

This feature may also be referred to as contact management, an address book module, or a customer service module.

 

Quality, security, and compliance

To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.

 

Regulatory compliance

The topic of whether or not an ELN meets regulatory compliance is often a complex one. While Title 21 CFR Part 11 has arguably had the largest influence on an electronic data management system's compliance, other influential standards have shaped the way laboratory informatics systems handle and store data.[18][19][10] Other compliance-based codes, standards, and regulations include:

With so many codes, standards, and regulations, ELN consumers are advised to contact vendors with their user requirements and ask how the vendor's software meets and/or exceeds those requirements.

QA/QC functions

The quality management functions of an ELN allow users to maintain a level of necessary quality across many of the functions in a laboratory. However, traditionally ELNs have been the domain of research and development (R&D) functions, in the process not giving much consideration to the needs of quality assurance and quality control (QA/QC) laboratories. Where R&D labs need flexibility and freedom, QA/QC labs require more structure in their ELN software.[20][21]


Performance evaluation

As document management becomes increasingly prevalent in LIMS, it only makes sense to also collate and store all the documentation associated with employee training and certification. Changes to laboratory techniques, scientific understanding, and business practices force researchers to learn, reevaluate, and demonstrate competency in order to maintain quality levels in the laboratory. Evaluations can frequently extend beyond staff members, however. Clinics, visit types, vendors, or test species can also be tracked and evaluated based on custom criteria. The performance evaluation functionality of a LIMS makes this possible.

That functionality typically includes the ability to maintain training records and history, and also to link that training to a technique or piece of equipment. Afterwards, the staff member, vendor, etc. can be marked as competent or certified in the equipment, knowledge, or process. Periodical assessment of the training and its practical effectiveness can later be performed. Productivity of an entity or process can also be gauged over a certain date range based on tracked time, pre-determined milestones, or some other criteria.

Audit trail

Whether validating sample data or an entire LIMS, maintaining an audit trail is an important part of 21 CFR Part 11 compliance.
As codes and regulations like Title 21 CFR Part 11 mandate "computer systems (including hardware and software), controls, and attendant documentation" utilize electronic signatures and audit trails[22], LIMS developers must put serious thought into how their software handles audit trail functionality. The audit trail — documentation of the sequence of activities that have affected an action — must be thorough and seamlessly integrated into the software.

Information recorded in the audit trail typically includes:

  • operator code
  • time stamp
  • location
  • case number
  • transaction type
  • amount and quantity prior to change
  • user notes


Chain of custody

The chain of custody (COC) of an item is of varying importance, depending on the type of laboratory. A highly regulated laboratory that works under Code of Federal Regulation or other guidelines makes tracking COC a vital part of its operations. This is especially true in forensic labs, which depend on continuous accountability of their evidence collection, retention, and disposal procedures.[23] As with an audit trail, a laboratory depends on recorded information like user ID, time stamp, and location ID to maintain a robust and accurate COC. Barcodes, inventory management, and configurable security roles all play an important part in maintaining chain of custody.

Configurable roles and security

Many roles exist within the laboratory setting, each with its own set of responsibilities. And just as the role an individual plays within the laboratory may change, so may the responsibilities associated with each role. This sort of change necessitates a flexible and configurable security system, one that allows for the placement of individual LIMS users into standardized security roles which provide role-specific access to certain LIMS functionality. Additionally, as responsibilities change within roles, that same flexible configuration is necessary for assigning or restricting access to certain LIMS functionality for each existing or newly created role.

Of course, roles aren't always assigned on an individual level. Often large groups of individuals may need to be assigned to roles, necessitating group assignments for security purposes. For example, a group of laboratory trainees may only be given read-only access to the sample login and sample tracking functionality of the system through a custom "Trainees" group role, while the head researcher of the lab may be given the "Administrator" role, which allows that individual to access most if not all of the LIMS' functionality.

Data normalization

For the purposes of describing LIMS functionality, "data normalization" specifically refers to the process of ensuring incoming/imported data into the LIMS is standardized to the same format of existing LIMS data.

Here's an example to better explain this issue. When a LIMS is initially configured, in most if not all cases a clear standard can be set for how logged samples and their associated measurements pre- and post-analysis are recorded in the system. Perhaps all temperatures will be recorded in Celsius to two decimal places. If temperature data imported from a spreadsheet or a lab instrument is not in this format, the LIMS can normalize the incoming data to match the standard already set for existing LIMS temperature data. This ensures consistency within the LIMS database and typically leads to better data validation efforts later on.

Note: Some LIMS developers may include data normalization functionality within what they may refer to as data validation functionality. The line between these two may be blurred or not exist at all.

Data validation

For the purposes of describing LIMS functionality, "data validation" specifically refers to the process of ensuring existing data in the LIMS — either pre-analysis or post-analysis — sufficiently meets any number of standards or thresholds set for sample login, sample analysis, or any other data management process in the LIMS. This validation process may be completely automatic and system-based, or it may also include additional steps on the part of the user base utilizing additional LIMS functionality, including verification of standard operating procedures (SOPs), QC samples, and QA approval.[24][25]

Note: This functionality shouldn't be confused with the process of validating the LIMS itself, which is an entirely different process partially falling under regulatory compliance and involves the process of ensuring "the software is performing in a manner for which it was designed."[26]

Data encryption

The existence of this functionality in LIMS software generally indicates the LIMS has the ability to protect the integrity and authenticity of its housed data through the use of a variety of technologies which makes data unreadable except to those possessing a key/right/etc. to unlock/read the data. This functionality is especially vital to the Web-enabled LIMS, which transfers information over the Internet in a client-server relationship. As a wide variety of encryption technologies exist, it's generally a good idea to consult with the developers of a LIMS to determine the strengths and weaknesses of their employed encryption methods.

Version control

Version control is a form of safeguard which helps preserve data integrity. This is typically done by creating a modifiable new version of a piece of information rather than allowing the original to be modified. Such versioning may be applied to a wide variety of digital information housed in the LIMS, including test methods, training certifications, instrument logs, specifications, and process and procedure (P&P) documentation. In LIMS like LabWare LIMS, reference data can also be versioned while also retaining the original relationship between samples and test results, including the version of reference data current at the time lab testing is performed.[27] Information tracked with such revisions includes attributes like user name, time the edit was made, and what exactly was edited. This also benefits those managing audit trails and chains of custody.

The temperature of an open cryopreservation container may be monitored on a computer via a connection to a LIMS with environmental monitoring functionality.
Other LIMS may employ a different form of version control called file locking, which simply puts the affected information into a read-only mode for users while someone else is busy editing it. Another popular strategy is to, rather than locking the file, allow multiple people edit to a piece of information, later merging the various edits. Potential LIMS buyers may need to inquire with developers to determine what type of versioning scheme is used in the vendor's software.

Automatic data backup

The existence of this piece of functionality in a LIMS usually means information contained in one or more associated databases or data warehouses can be automatically preserved in an additional backup file. The save location for that file as well as the scheduled backup time is configurable, typically through the administrative module of the LIMS.

Environmental monitoring

Some LIMS like Core LIMS and Oracle Health Sciences LabPas allow users to monitor the environmental conditions of not only sample storage containers but also the entire laboratory itself.[28][29] Attributes like humidity, air quality, and temperature may be monitored to ensure sample storage units and experiments maintain desired conditions. Alarms may be able to be configured to notify staff if a storage container's environmental attributes go beyond a certain threshold. Manufacturers utilizing a LIMS like NOVA-LIMS may also be able to employ more advanced environmental tracking features in the plant to guarantee a more consistent, higher quality product is created.[30]

 

Reporting, barcoding, and printing

To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.

 

Custom reporting

Reporting is a vital part of a LIMS, as it allows users to gain a clearer picture of collected data and potential trends. At a minimum a number of pre-configured report styles come standard with a LIMS. However, some LIMS are more flexible than others, offering the ability to customize reports in numerous ways. The most popular attributes of custom reporting include custom headers, custom information placement, charts, pivot tables, and multiple output formats.

Note: Some LIMS vendors will offer custom reporting as an option as an added cost, depending on the level of customization required.

Report printing

Today's LIMS software almost universally offers the ability to print reports and other materials, so this feature may seem a bit redundant to list. Nonetheless, printer support is a feature worth confirming when considering a piece of LIMS software.

Label support

The label — typically affixed to a sample container — is a vital part of the sample tracking process.[31] Identifying information such as sample number, batch number, and barcodes are printed on such labels to ensure optimized sample management and more precise sample data. As such, some LIMS allow users to design and print labels directly from the software.

The word "Wikipedia" encoded in Code 128 and Code 39

Barcode support

Barcodes offer many advantages to laboratory techs handling samples, including more accurate data input, tighter sample/instrument associations, tighter sample/study associations, and more room for human-readable information on a label.[31] Given such advantages, many LIMS developers have integrated barcode support into their laboratory information management systems, including support for symbologies like Code 128, Code 39, and Interleaved 2 of 5. Aside from printing options, a LIMS may also offer support for a variety of bar code readers.

Barcode support and label support are typically found together in LIMS software, but not always, thus their separation into two features of a LIMS.

Export to PDF

A LIMS with this feature is able to collect and save information into a Portable Document Format (PDF).

Export to MS Word

A LIMS with this feature is able to collect and save information into a Microsoft Office Word format.

Export to HTML or XML

A LIMS with this feature is able to collect and save information into a HyperText Markup Language (HTML) and/or Extensible Markup Language (XML) format.

Fax integration

A LIMS with this feature is able to connect with a fax machine and send information to it via manual input, automatically, and/or at scheduled intervals.

Email integration

A LIMS with this feature is able to integrate with and use the electronic mail information exchange method to send reports, alerts, and more via manual input, automatically, and/or at scheduled intervals.

 

Base functionality

To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right.

 

Administrator management

The administrator management tools of a LIMS allow lab technicians to set up the LIMS most optimally for the laboratory. Through the administrator management interface of a LIMS, other features may be accessed like setting up user roles and scheduling automatic data backups.

Like report printing, administrator management is nearly ubiquitous in LIMS software, generally considered a mandatory feature. However, for the purposes of being thorough, it's important to point out its existence.

Modular

This feature indicates that a LIMS has an intentional modular design, which separates some functionality into manageable components of the overall system. Generally speaking, a modular design allows for 1. the structured addition of new functionality to a LIMS and 2. the limiting of overall effects on the system design as new functionality is added.

Instrument interfacing and management

An entire room of gas chromatography instruments could potentially be connected to a LIMS via instrument interfacing.
In laboratories there are instruments, and with those instruments comes scientific measurements which produce data. It's therefor natural a lab technician would want to connect those instruments to a laboratory information management system, which is already organizing and storing laboratory data. This sort of interfacing is typically handled with instrument-to-LIMS interfaces, which started out as merely data-transfer mechanisms. Later that interface mechanism became much more robust as a data management tool, though often at great expense with heavy involvement from third parties.[32] Today, "many LIMS vendors can act as single source providers of the entire instrument interfacing solution,"[33], providing a cheaper and smoother solution to LIMS customers.

Mobile device integration

While not incredibly common, a few LIMS developers are including support for mobile devices in their laboratory information management system. LabCollector, for example, extends its LIMS' functionality to Pocket PC or Windows CE devices equipped with wireless barcode scanners, allowing users to read or collect sample information while on the move.[34] Future Technologies' DNA LIMS, designed for labs performing DNA analysis, has its own mobile version for technicians who need access but can't be in the lab.[35]

Alarms and/or alerts

Alarms and alerts are an integral part of a LIMS. They can be automatic or scheduled, and they can come in the form of an e-mail, a pop-up message, or a mobile text message. When the results for a sample analysis go out out of range, an automatic warning message can appear on the screen of the technician responsible for the analysis. A scheduled alert can be e-mailed to a lab technician every month indicating a piece of laboratory equipment needs routine maintenance. If the LIMS is equipped with environmental monitoring, an alert can be sent in the form of an SMS text message to the head researcher if the temperature inside a freezer unexpectedly rises. All of these scenarios represent a tiny fraction of the possible implementation of alarms and alerts in a LIMS, highlighting how powerful (yet easy to take for granted) this feature is.

Work-related time tracking

This feature specifically refers to a LIMS' ability to track the amount of time an employee spends at work in general (for payroll purposes) or on more specific projects and tasks (as part of an employee work evaluation program).

Voice recognition system

A LIMS with this feature allows some functions of the LIMS (for example, accessing sample analysis results) to be accessed via voice commands.

External monitoring

This feature allows clients outside the laboratory to monitor the status of sample batches, test results, and more via an online Web portal or, less commonly, as activity alerts sent via e-mail, fax, or SMS.

Messaging

Instant messaging clients built into a LIMS often make it easier to collaborate.
The messaging feature of a LIMS may refer to one (or both) of two things:
  • a built-in instant messaging system that allows users to converse with each other through text messages real-time
  • an SMS text messaging integration that allows the users or the LIMS itself to send messages or alerts to a user's mobile or smart phone

Multilingual

If a LIMS is listed as multilingual, its an indication the LIMS interface can be configured to display more than one language depending on the preference a user or administrator chooses. Some LIMS interfaces can only be displayed in one of two languages (English or German, for example), while others come configured with support for dozens of languages.

Network-capable

This feature is perhaps archaic and/or obvious, but it is mentioned nonetheless. It's generally applied to a non-Web-based LIMS installed over a local or wide-area computer network, essentially indicating the LIMS is not an isolated application, but rather one that can interface with other instances of the LIMS or other networked instruments.

Web client or portal

A LIMS with a Web client or portal is either a Web-based LIMS (one that is not installed on every computer, but rather is hosted on a server and accessed via a Web browser) or a non-Web-based LIMS with an included portal to access it via the Internet.

Online or integrated help

This indicates a LIMS has help infrastructure integrated into the software, support documentation via the LIMS vendor's website, or both.

Software as a service delivery model

This indicates the software can be licensed and utilized via the software as a service (SaaS) delivery model.

Usage-based cost

While rare, some LIMS vendors allow potential clients to license and utilize the vendor's software under a usage-based cost model. An example of this model in use is Bytewize AB's O3 LimsXpress, which has a cost directly related to the amount of samples processed each month.[36]

 

References

  1. Macneil, Rory (6 October 2010). "What are electronic lab notebooks for?". Axiope. http://elnblog.axiope.com/?p=451. Retrieved 04 May 2011. 
  2. "Nexxis Electronic Laboratory Notebook" (PDF). PerkinElmer, Inc. 2011. http://www.cambridgesoft.com/literature/PDF/Nexxis%20ELN.pdf. Retrieved 07 February 2013. 
  3. Richter, Brent G.; David P. Sexton (2009). "Managing and Analyzing Next-Generation Sequence Data". PLoS Computational Biology 5 (6). doi:10.1371/journal.pcbi.1000369. http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000369. 
  4. "Scilligence ELN". Scilligence Corporation. http://www.scilligence.com/web/eln.aspx. Retrieved 07 February 2013. 
  5. Macneil, Rory (2011). "The benefits of integrated systems for managing both samples and experimental data: An opportunity for labs in universities and government research institutions to lead the way". Automated Experimentation 3 (2). doi:10.1186/1759-4499-3-2. http://www.aejournal.net/content/3/1/2. 
  6. "Espresso ELN Key Features". ChemBytes. http://chembytes.com/index.php/espresso/features. Retrieved 12 February 2013. 
  7. "OpenLAB ELN's easy-to-use, Web-based interface makes it easy to create and modify experiments". Agilent Technologies, Inc. http://openlabeln.chem.agilent.com/LP=31. Retrieved 12 February 2013. 
  8. 8.0 8.1 "Introduction to Kalabie Electronic Lab Notebook - September, 2009" (PDF). Agilent Technologies, Inc. September 2009. p. 9. http://www.chem.agilent.com/Library/slidepresentation/Public/Save%20Time%20Capture%20Share%20Data_ELN%20v4%200.pdf. Retrieved 12 February 2013. 
  9. "NuGenesis ELN - Take Control of Your Laboratory Workflow" (PDF). Waters Corporation. 2012. p. 7. http://www.waters.com/webassets/cms/library/docs/720002133en.pdf. Retrieved 12 February 2013. 
  10. 10.0 10.1 10.2 Proffitt, Allison (22 February 2012). "ELN Excellence: The New Lab Notebooks". BioIT World. http://www.bio-itworld.com/2012/02/22/eln-excellence-new-lab-notebooks.html. Retrieved 12 February 2013. 
  11. Williams, Robert W. (2003). "Managing Your Lab Data Flux: Getting Beyond Excel" (PDF). The Bioinformatics of Brains: From Genes and Proteins to Behaviors. Washington, DC: Society for Neuroscience. http://www.sfn.org/skins/main/pdf/ShortCourses/2003/sc1_9.pdf. Retrieved 17 February 2012. 
  12. Howard, David A.; David Harrison (2007). "A Pragmatic Approach to the Validation of Excel Spreadsheets – Overview" (PDF). Pharma IT 1 (2): 30–35. http://www.spreadsheetvalidation.com/pdf/Excel_Spreadsheet_Validation_Overview.pdf. 
  13. Vannest, Jeff (11 February 2011). "Advantages of a Data Warehouse". LABVANTAGE Solutions, Inc. http://www.labvantage.com/blog/?p=79. Retrieved 12 February 2013. 
  14. "Workflow Management Coalition Terminology & Glossary" (PDF). Workflow Management Coalition. February 1999. pp. 9. http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf. Retrieved 20 February 2012. 
  15. Maxwell, Glen (1 November 2003). "Using Workflows in LIMS to Reduce Customization". Scientific Computing and Instrumentation. http://www.scientificcomputing.com/using-workflows-in-lims-to-reduce.aspx. Retrieved 20 February 2012. 
  16. Beato, Brian D.; Grever, Timothy P. ; Branstrator, Laurel E.. "Using Electronic Lab Notebook Functionality for Validating Electronic Lab Notebook Workflows" (PDF). AIT Bioscience. http://aitbioscience.com/wp-content/uploads/Using-Electronic-Lab-Notebook-Functionality-for-Validating-Electronic-Lab-Notebook-Workflows.pdf. Retrieved 12 February 2013. 
  17. "LabCollector's Electronic Lab Notebook (ELN)". AgileBio. http://labcollector.com/index.php/eln-add-on-newhtml. Retrieved 12 February 2013. 
  18. [http://www.vialis.ch/fileadmin/files/imgs/pdf/Newsletter/q2-09/ELN_LAB.pdf "ELN Reduces Regulatory Compliance Costs"] (PDF). Labtronics Inc. January 2005. http://www.vialis.ch/fileadmin/files/imgs/pdf/Newsletter/q2-09/ELN_LAB.pdf. Retrieved 12 February 2013. 
  19. Price, Michael (17 August 2012). "How an ELN Mitigates the Risks Associated with Regulatory Compliance". KineMatik Ltd. http://www.kinematik.com/blog/bid/207452/How-an-ELN-Mitigates-the-Risks-Associated-with-Regulatory-Compliance. Retrieved 12 February 2013. 
  20. Bolton, Steve. "Why doesn’t a Traditional Electronic Laboratory Notebook work in a QA/QC lab? - ELN Requirements for Quality Assurance and Quality Control". CambridgeSoft Corporation. Archived from the original on 22 July 2011. http://web.archive.org/web/20110722165349/http://chembionews.cambridgesoft.com/Articles/Default.aspx?articleID=740. Retrieved 12 February 2013. 
  21. Pavlis, Robert (September 2005). "Why Doesn't a Traditional Electronic Laboratory Notebook Work in a QA/QC Lab?". Scientific Computing & Instrumentation 22 (10): 31. http://connection.ebscohost.com/c/articles/18473960/why-doesnt-traditional-electronic-laboratory-notebook-work-qa-qc-lab. 
  22. "Electronic Code of Federal Regulations - Title 21: Food and Drugs - Part 11: Electronic Records; Electronic Signatures". U.S. Government Printing Office. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&sid=5ff3a0efed913ef8fae9e225869688a2&rgn=div5&view=text&node=21:1.0.1.1.7&idno=21. Retrieved 02 March 2012. 
  23. Jones, Andrew; Craig Valli (2008). "Chapter 1: An Introduction to Digital Forensics". Building a Digital Forensic Laboratory: Establishing and Managing a Successful Facility. Butterworth-Heinemann. pp. 11. ISBN 1856175103. http://books.google.com/books?id=F5IU7XXKwCQC. 
  24. "Quality Assurance - Data Management". Stable Isotope Ratio Facility for Environmental Research (SIRFER) at the University of Utah. http://sirfer.utah.edu/qaqc.pdf. Retrieved 07 May 2012. 
  25. Hitchcock, Noel (2005). "Chapter 10: Efficient utilization of LIMS data and integration with mining process management systems". In Dessureault, Sean D.; Rajive Ganguli; Vladislav Kecojevic; Jami Girard Dwyer. Application of Computers and Operations Research in the Mineral Industry. Taylor & Francis. pp. 85–88. doi:10.1201/9781439833407.ch10. ISBN 9780415374491. http://www.crcnetbase.com/doi/abs/10.1201/9781439833407.ch10. 
  26. Turner, Elizabeth; Jojean Bolton (2001). "Required steps for the validation of a Laboratory Information Management System". Quality Assurance 9 (3–4): 217–224. PMID 12553085. http://www.ncbi.nlm.nih.gov/pubmed/12553085. 
  27. "LabWare - Table Explorer". LabWare, Inc.. http://www.labware.com/LWWeb.nsf/lp/en041001. Retrieved 07 May 2012. 
  28. "Core LIMS Features & Components". Core Informatics, LLC. http://www.corelims.com/features.htm. Retrieved 07 May 2012. 
  29. "Oracle Health Sciences LabPas" (PDF). Oracle Corporation. 2011. http://www.oracle.com/us/industries/life-sciences/health-sciences-labpas-ds-396097.pdf. Retrieved 07 May 2012. 
  30. "Environmental Monitoring Program". Novatek International. http://ntint.com/prod-envmon.shtml. Retrieved 07 May 2012. 
  31. 31.0 31.1 Gilles, Clarence (1 July 2008). "Bar Code and Sample Tracking: It All Starts with the Label". Scientific Computing. http://www.scientificcomputing.com/bar-code-and-sample-tracking.aspx. Retrieved 8 May 2012. 
  32. Pavlis, Robert (May/June 2004). "Trends in instrument-to-LIMS interfacing". Scientific Computing World. http://www.scientific-computing.com/features/feature.php?feature_id=88. Retrieved 8 May 2012. 
  33. DeHeer, Larry (1 October 2009). "Instrument Interfacing - The Great Paradox of LIMS?". LIMSfinder.com. http://www.limsfinder.com/BlogDetail.aspx?id=33851_0_2_0_C. Retrieved 8 May 2012. 
  34. "LabCollector - Features in detail". AgileBio. http://labcollector.com/index.php/labcollector-on-pdahtml. Retrieved 8 May 2012. 
  35. "Biometrics and DNA Laboratory Information Management and Analysis System Development". Future Technologies, Inc.. http://www.ftechi.com/dna_biometric.shtml. Retrieved 8 May 2012. 
  36. "Modern web based Lims from 10 Euro cent/sample". Bytewize AB. http://www.bytewize.com/o3lims-xpress/prices/?lang=en. Retrieved 8 May 2012.