Difference between revisions of "User:Shawndouglas/Sandbox"

From LIMSWiki
Jump to navigationJump to search
(Finished adding rest of content.)
Line 3: Line 3:
| type      = notice
| type      = notice
| style    = width: 960px;
| style    = width: 960px;
| text      = This is my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
| text      = This is sublevel1 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}
}}


Line 13: Line 13:
|alt          = <!-- Alternative text for images -->
|alt          = <!-- Alternative text for images -->
|caption      =  
|caption      =  
|title_full  = How big data, comparative effectiveness research, and rapid-learning health care<br />systems can transform patient care in radiation oncology
|title_full  = How could the ethical management of health data in the medical field inform police use of DNA?
|journal      = ''Frontiers in Oncology''
|journal      = ''Frontiers in Public Health''
|authors      = Sanders, Jason C.; Showalter, Timothy N.
|authors      = Krikorian, Gaelle; Vailly, Joëlle
|affiliations = University of Virginia School of Medicine
|affiliations = Institut de recherche interdisciplinaire sur les enjeux sociaux (IRIS)
|contact      = Email: tns3b@virginia.edu
|contact      = Email: gaelle.krikorian@gmail.com
|editors      = Deng, Jun
|editors      = Lefèvre, Thomas
|pub_year    = 2018
|pub_year    = 2018
|vol_iss      = '''8'''
|vol_iss      = '''6'''
|pages        = 155
|pages        = 154
|doi          = [http://10.3389/fonc.2018.00155 10.3389/fonc.2018.00155]
|doi          = [http://10.3389/fpubh.2018.00154 10.3389/fpubh.2018.00154]
|issn        = 2234-943X
|issn        = 2296-2565
|license      = [http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International]
|license      = [http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International]
|website      = [https://www.frontiersin.org/articles/10.3389/fonc.2018.00155/full https://www.frontiersin.org/articles/10.3389/fonc.2018.00155/full]
|website      = [https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/full https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/full]
|download    = [https://www.frontiersin.org/articles/10.3389/fonc.2018.00155/pdf https://www.frontiersin.org/articles/10.3389/fonc.2018.00155/pdf] (PDF)
|download    = [https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/pdf https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/pdf] (PDF)
}}
}}
{{ombox
{{ombox
Line 34: Line 34:
}}
}}
==Introduction==
==Introduction==
Big data and comparative effectiveness research methodologies can be applied within the framework of a rapid-learning health care system (RLHCS) to accelerate discovery and to help turn the dream of fully personalized medicine into a reality. We synthesize recent advances in [[genomics]] with trends in big data to provide a forward-looking perspective on the potential of new advances to usher in an era of personalized radiation therapy, with emphases on the power of RLHCS to accelerate discovery and the future of individualized radiation treatment planning.
Various events paved the way for the production of ethical norms regulating biomedical practices, from the Nuremberg Code (1947)—produced by the international trial of Nazi regime leaders and collaborators—and the Declaration of Helsinki by the World Medical Association (1964) to the invention of the term “bioethics” by American biologist Van Rensselaer Potter.<ref name="PotterBio70">{{cite journal |title=Bioethics, the science of survival |journal=Perspectives in Biology and Medicine |author=Potter, V.R. |volume=14 |issue=1 |pages=127–53 |year=1970 |doi=10.1353/pbm.1970.0015}}</ref> The ethics of biomedicine has given rise to various controversies—particularly in the fields of newborn screening<ref name=VaillyTheBirth13">{{cite book |title=The Birth of a Genetics Policy: Social Issues of Newborn Screening |author=Vailly, J. |publisher=Routledge |pages=240 |year=2013 |isbn=9781472422729}}</ref>, prenatal screening<ref name="IsambertÉthique80">{{cite journal |title=Éthique et génétique: De l'utopie eugénique au contrôle des malformations congénitales |journal=Revue française de sociologie |author=Isambert, F.A. |volume=21 |issue=3 |pages=331–54 |year=1980 |doi=10.2307/3320930}}</ref>, and cloning<ref name="PulmanLesEnjeux05">{{cite journal |title=Les enjeux du clonage |journal=Revue française de sociologie |author=Pulman, B. |volume=46 |issue=3 |pages=413–42 |year=2005 |doi=10.3917/rfs.463.0413}}</ref>—resulting in the institutionalization of ethical questions in the biomedical world of genetics. In 1994, France passed legislation (commonly known as the “bioethics laws”) to regulate medical practices in genetics. The medical community has also organized itself in order to manage ethical issues relating to its decisions, with a view to handling “practices with many strong uncertainties” and enabling clinical judgments and decisions to be made not by individual practitioners but rather by multidisciplinary groups drawing on different modes of judgment and forms of expertise.<ref name="BourretDécision08">{{cite journal |title=Décision et jugement médicaux en situation de forte incertitude : l’exemple de deux pratiques cliniques à l’épreuve de la génétique |journal=Sciences sociales et santé |author=Bourret, P.; Rabeharisoa, V. |volume=26 |issue=1 |pages=128 |year=2008 |doi=10.3917/sss.261.0033}}</ref> Thus, the biomedical approach to genetics has been characterized by various debates and the existence of public controversies.


'''Keywords''': big data, radiation oncology, comparative effectiveness research, rapid-learning health care system, personalized radiation therapy
In the judicial sphere, the situation is very different. Since the end of the 1990s, developments in biomedical research have led to genetic data being used in police work and legal proceedings. Today, [[forensic science]] is omnipresent in investigations, not just in complex criminal cases but also routinely in cases of “minor” or “mass” delinquency. Genetics, which certainly receives the most media coverage among the techniques involved<ref name="BrewerMedia09">{{cite journal |title=Media Use and Public Perceptions of DNA Evidence |journal=Science Communication |author=Brewer, P.R.; Ley, B.L. |volume=32 |issue=1 |pages=93–117 |year=2009 |doi=10.1177/1075547009340343}}</ref>, has taken on considerable importance.<ref name="WilliamsGenetic08">{{cite book |title=Genetic Policing: The Uses of DNA in Police Investigations |author=Williams, R.; Johnson, P. |publisher=Willan |pages=208 |year=2008 |isbn=9781843922049}}</ref> However, although very similar techniques are used in biomedicine and police work (DNA amplification, [[sequencing]], etc.), the forms of collective management surrounding them are very different, as well as the ethico-legal frameworks and their evolution, as this text will demonstrate.


==Comparative effectiveness research (CER) and big data==
'''Keywords''': DNA, police, ethics, genetic technologies, criminal investigations
The Committee on CER Prioritization was created by the Institute of Medicine in 2009. They defined CER as “a strategy that focuses on the practical comparison of two or more health intervention to discern what works best for which patients and populations.”<ref name="IoMInitial09">{{cite book |url=https://www.nap.edu/catalog/12648/initial-national-priorities-for-comparative-effectiveness-research |title=Initial National Priorities for Comparative Effectiveness Research |author=Institute of Medicine of the National Academies |publisher=National Academies Press |year=2009 |isbn=9780309138369}}</ref> In essence, the goal of CER is to identify "which treatment will work best, in which patient, under what circumstances.”<ref name="GreenfieldWelcome12">{{cite journal |title=Welcome to the Journal of Comparative Effectiveness Research |journal=Journal of Comparative Effectiveness Research |author=Greenfield, S.; Rich, E. |volume=1 |issue=1 |pages=1–3 |year=2012 |doi=10.2217/cer.11.13 |pmid=24237290}}</ref> Big data refers to data sets that are so large that they cannot be analyzed directly by individuals or traditional processing software. Big data analytics (BDA) is a growing field with a multitude of methods that is being utilized in various sectors from business to medicine.<ref name="SivarajahCritical17">{{cite journal |title=Critical analysis of Big Data challenges and analytical methods |journal=Journal of Business Research |author=Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. |volume=70 |pages=263–86 |year=2017 |doi=10.1016/j.jbusres.2016.08.001}}</ref> The advent of the [[electronic medical record]] (EMR) has resulted in the digitization of massive data sets of medical information, including clinic encounters, [[laboratory]] values, imaging data sets and reports, pathology reports, patient outcomes, and family history, as well as genomic and biological data, etc.


To help with the [[Data analysis|analysis]] of big data, the [[National Institutes of Health]] (NIH) has created the Big Data to Knowledge (BD2K) program, which has invested over $200 million in grant awards to foster the development of methods and tools to analyze big data in biomedical research.<ref name="MargolisTheNat14">{{cite journal |title=The National Institutes of Health's Big Data to Knowledge (BD2K) initiative: Capitalizing on biomedical big data |journal=JAMIA |author=Margolis, R.; Derr, L.; Dunn, M. et al. |volume=21 |issue=6 |pages=957–8 |year=2014 |doi=10.1136/amiajnl-2014-002974 |pmid=25008006 |pmc=PMC4215061}}</ref> Additionally, the BD2K program will move to make sure that biomedical big data is “findable, accessible, interoperable, and reusable” (FAIR).<ref name="MargolisTheNat14" /> Over the past decade, CER methodologies have become increasingly prevalent in radiation oncology research, and there is much enthusiasm surrounding BDA.
==Nature of the information and genetic data produced in the police sphere==


==Rapid-learning health care system (RLHCS) and personalized medicine==
In police work in France, data produced by DNA are currently compiled and used in two different ways: first, to create files on individuals in the FNAEG or ''Fichier national automatisé des empreintes génétiques'' (national automated DNA database) and, second, in order to obtain [[information]] about perpetrators of crimes (their appearance, their origin, their kinship links to other individuals).
The number of articles on big data in health care has increased exponentially from under 500 articles in 2005 to over 2500 articles in 2015.<ref name="deLaTorreDíezBig16">{{cite journal |title=Big Data in Health: a Literature Review from the Year 2005 |journal=Journal of Medical Systems |author=de la Torre Díez, I.; Cosgava, H.M.; Garcia-Zapirain, B.; López-Coronado, M. |volume=40 |issue=9 |pages=209 |year=2016 |doi=10.1007/s10916-016-0565-7 |pmid=27520614}}</ref> As the amount of biomedical big data and our ability to analyze these data continues to advance, so will the implications and use of the [[information]] we are able to extract. One of the most important steps toward advancing our ability to analyze these big data for biomedical discovery is the creation of RLHCS, which will allow for the sharing of patient data between EMRs, ideally in real-time.<ref name="GinsburgCompar12">{{cite journal |title=Comparative effectiveness research, genomics-enabled personalized medicine, and rapid learning health care: A common bond |journal=Journal of Clinical Oncology |author=Ginsburg, G.S.; Kuderer, N.M. |volume=30 |issue=34 |pages=4233-42 |year=2012 |doi=10.1200/JCO.2012.42.6114 |pmid=23071236 |pmc=PMC3504328}}</ref> An ideal RLHCS would take patient data that was routinely generated as part of standard patient care and compile that data into a large data system.<ref name="GinsburgCompar12" /><ref name="GinsburgAcademic11">{{cite journal |title=Academic medical centers: Ripe for rapid-learning personalized health care |journal=Science Translational Medicine |author=Ginsburg, G.S.; Staples, J.; Abernethy, A.P. |volume=3 |issue=101 |pages=101cm27 |year=2011 |doi=10.1126/scitranslmed.3002386 |pmid=21937754}}</ref><ref name="AbernathyRapid10">{{cite journal |title=Rapid-learning system for cancer care |journal=Journal of Clinical Oncology |author=Abernethy, A.P.; Etheredge, L.M.; Ganz, P.A. et al. |volume=28 |issue=27 |pages=4268-74 |year=2010 |doi=10.1200/JCO.2010.28.5478 |pmid=20585094 |pmc=PMC2953977}}</ref> This aggregate data would then be available for both BDA to accelerate identification of new hypotheses and CER to rapidly generate evidence through hypothesis-testing studies. Clinical data from patient records can be used readily to identify novel relationships among clinical factors and patient outcomes, or to evaluate treatment effectiveness in specific subgroups, that cannot be studied adequately in randomized, controlled trials. The extreme power of RLCHS, though, is even more exciting when one considers the possibility of adding biospecimens to accelerate discovery in genomics and proteomics. As RLHCSs are created and their data sets are expanded, we will continue to identify specific genomic and proteomic data to help define cohorts and stratify patients into risk groups and treatment response groups, and potentially to help design highly tailored therapy regimens.<ref name="RamseyHow11">{{cite journal |title=How comparative effectiveness research can help advance 'personalized medicine' in cancer treatment |journal=Health Affairs |author=Ramsey, S.D.; Veenstra, D.; Tunis, S.R. et al. |volume=30 |issue=12 |pages=2259–68 |year=2011 |doi=10.1377/hlthaff.2010.0637 |pmid=22147853 |pmc=PMC3477796}}</ref> In this sense, the RLHCS would usher in a more fertile era for improving biomedical research than ever before. BDA and CER provide the research methodologies needed to rapidly generate evidence from the RLHCS. It should be noted, however, that there are substantial practical obstacles that must be addressed to achieve the vision of the RLHCS. These include patient concerns regarding privacy and security of sensitive information, interconnectivity among different health records, and regulatory barriers to the exchange of health information.


==Integrating an RLHCS with oncology==
Police use of DNA has been allowed in France since the 1998 law providing for the creation of the FNAEG. A DNA profile corresponds to a “specific individual alphanumeric combination”<ref name="CabalRapport01">{{cite book |title=Rapport sur la valeur scientifique de l'utilisation des empreintes génétiques dans le domaine judiciaire |author=Cabal, C.; Le Déaut, J.-Y.; Revol, H. |publisher=Assemblée nationale |year=2001 |isbn=2111150177}}</ref> that is the numerical encoding of analysis of DNA segments. This profile is the result of analysis of DNA fragments using genetic markers. This analysis can be carried out on a minute amount of genetic material (saliva, blood, sperm, hair, contact, etc.). It identifies the presence of sequences specific to an individual that differentiate them from any other person (with the exception of an identical twin) but that are not supposed to provide any phenotypical information (about appearance, geographical origin, or diseases).{{efn|The Order of 10 August 2015 increased the number of markers analyzed to 21; policemen and analysis laboratories had three years to comply with this new requirement.}} Such profiles therefore make individuals “identifiable in their uniqueness.”<ref name="BonniolL'ADN14">{{cite journal |title=L’ADN au service d’une nouvelle quête des ancêtres? |journal=Civilisations |author=Bonniol, J.-L.; Darlu, P. |volume=63 |pages=201–19 |year=2014 |doi=10.4000/civilisations.3747}}</ref> During investigations, DNA is collected from suspects or unidentified stains left on crime scenes or people and the results of this analysis are entered into the database. Identification through the FNAEG was originally restricted to a limited number of crimes—those of a sexual nature, as part of the law relating to the prevention and punishment of sexual crimes and the protection of minors. This remit has progressively been extended to include the vast majority of crimes and offences{{efn|Act n°98-468 of 17 June 1998 relative to the punishment of sexual crimes and the protection of minors introduced article 706-54 into the Code of Criminal Procedure making provision for the creation of an automated national database to centralize the DNA profiles of persons convicted of offences of a sexual nature. The remit of the database was then extended on several occasions. In 2001, it included serious crimes against persons. In 2003, the law on internal security extended it to persons convicted of or implicated in crimes and offences against persons or property.}}, leading to the routine use of DNA in investigations.{{efn|Collecting DNA samples in investigations is now the rule. An ''ad hoc'' body of staff has been trained over the past 15 years that almost systematically processes crime scenes.}} As a result of this evolution, there has been a substantial increase in the number of persons with files in the FNAEG, more than three million as of late 2015.{{efn|This figure was provided to the French Parliament by the Ministry of the Interior following a question by parliamentarian Sergio Coronado (member of the “Ecologist” parliamentary group) (http://questions.assemblee-nationale.fr/q14/14-79728QE.htm).}}
The integration of CER, big data, and BDA is especially important in the field of oncology, where multiple groups are investing significant time and resources in efforts to expand the availability of data and advance the methods used to extract meaningful information from that data.<ref name="MargolisTheNat14" /><ref name="HelftCanBig14">{{cite journal |title=Can big data cure cancer? |journal=Fortune |author=Helft, M. |volume=170 |issue=2 |pages=70–4, 76, 78 |year=2014 |pmid=25318238}}</ref><ref name="WilliamsArtificial18">{{cite journal |title=Artificial intelligence, physiological genomics, and precision medicine |journal=Physiological Genomics |author=Williams, A.M.; Liu, Y.; Regner, K.R. et al. |volume=50 |issue=4 |pages=237–43 |year=2018 |doi=10.1152/physiolgenomics.00119.2017 |pmid=29373082 |pmc=PMC5966805}}</ref><ref name="SavageBigData14">{{cite journal |title=Big data versus the big C |journal=Scientific American |author=Savage, N. |volume=311 |issue=1 |pages=S20–1 |year=2014 |pmid=24974705}}</ref><ref name="ShahBuilding16">{{cite journal |title=Building a rapid learning health care system for oncology: Why CancerLinQ collects identifiable health information to achieve its vision |journal=Journal of Clinical Oncology |author=Shah, A.; Stewart, A.K.; Kolacevski, A. et al. |volume=34 |issue=7 |pages=756–63 |year=2016 |doi=10.1200/JCO.2015.65.0598 |pmid=26755519}}</ref><ref name="TrifilettiBigData15">{{cite journal |title=Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery |journal=Frontiers in Oncology |author=Trifiletti, D.M.; Showalter, T.N. |volume=5 |pages=274 |year=2015 |doi=10.3389/fonc.2015.00274 |pmid=26697409 |pmc=PMC4672039}}</ref> The American Society of Clinical Oncology started their own RLHCS, CancerLinQ, to overcome the lack of interoperability between EMRs and accomplish their goal of being able to “analyze and share data on every patient with cancer.”<ref name="ASCOShaping11">{{cite web |url=https://www.asco.org/sites/default/files/shapingfuture-lowres.pdf |title=Shaping the Future of Oncology: Envisioning Cancer Care in 2030: Outcomes of the ASCO Board of Directors Strategic Planning and Visioning Process, 2011-2012 |publisher=American Society of Clinical Oncology |date=2011}}</ref> While the vision of RLCHS has not yet been fully achieved, the potential impact on society has stimulated enthusiasm toward this effort.


==Implications for radiation oncology==
New techniques have also emerged in recent years. It is now possible to obtain indications about an individual's physical appearance based on a sample of his/her DNA<ref name="KayserImproving11">{{cite journal |title=Improving human forensics through advances in genetics, genomics and molecular biology |journal=Nature Reviews Genetics |author=Kayser, M.; de Knijff, P. |volume=12 |issue=3 |pages=179–92 |year=2011 |doi=10.1038/nrg2952 |pmid=21331090}}</ref><ref name="KayserForensic15">{{cite journal |title=Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes |journal=Forensic Science International Genetics |author=Kayser, M. |volume=18 |pages=33–48 |year=2015 |doi=10.1016/j.fsigen.2015.02.003 |pmid=25716572}}</ref>: the analyses in question provide statistical information on eye, hair, and skin color, etc. These techniques are more exploratory and aim not to match DNA with an identity by comparison but to determine the characteristics of the perpetrator of a crime. These data result from [[Data analysis|analysis]] of several dozen DNA markers that, unlike the FNAEG's data, are selected deliberately so that they can provide information about a person's physical appearance. They are therefore aimed at “generating a suspect”<ref name="M'charekBeyond13">{{cite journal |title=Beyond Fact or Fiction: On the Materiality of Race in Practice |journal=Cultural Anthropology |author=M'charek, A. |volume=28 |issue=3 |pages=420–42 |year=2013 |doi=10.1111/cuan.12012}}</ref> but because the information about this person's features are incomplete (e.g., a person with blue eyes, fair skin, light brown hair, and of European “bio-geographical” ancestry), they define “target populations of interest” to guide police investigations.<ref name="CaliebePredictive18">{{cite journal |title=Predictive values in Forensic DNA Phenotyping are not necessarily prevalence-dependent |journal=FSI Genetics |author=Caliebe, A.; Krawczak, M.; Kayser, M. |volume=33 |pages=e7–e8 |year=2018 |doi=10.1016/j.fsigen.2017.11.006}}</ref> Several private and public laboratories in France now produce what professionals often refer to as “DNA photofits”; it is estimated that several dozen such analyses have been carried out since 2014 as part of investigations.
===Patient reported outcomes (PROs)===
Patient reported outcomes and quality-of-life (QoL) have become a major area of focus in health care overall, particularly in oncology. The availability of PROs within EMRs provides the foundation for an RLHCS that can be leveraged to expand insights into how cancer treatments impact patient QoL. By incorporating the PROs for massive numbers of patients, RLHCS will be able to identify small variations and subgroups of patients that might be missed in the smaller number of patients included in traditional randomized controlled trials. These PROs and QoL domains can then be incorporated into clinical decision-making to help guide both providers and patients.<ref name="SarinBigData14">{{cite journal |title=Big Data V4 for integrating patient reported outcomes and quality-of-life indices in clinical practice |journal=Journal of Cancer Research and Therapies |author=Sarin, R. |volume=10 |issue=3 |pages=453-5 |year=2014 |doi=10.4103/0973-1482.142741 |pmid=25313720}}</ref> In doing this, PROs can act as a link between the objective clinical data and the subjective patient outcomes and experiences to help improve the overall care of the patient.<ref name="KimPredict17">{{cite journal |title=Predictive modelling analysis for development of a radiotherapy decision support system in prostate cancer: A preliminary study |journal=Journal of Radiotherapy in Practice |author=Kim, K.H.; Lee, S.; Shim, J.B. et al. |volume=16 |issue=2 |pages=161–70 |year=2017 |doi=10.1017/S1460396916000583}}</ref> One may also conceive of potential genomics-based determinants of QoL that could be identified using BDA if RLHCSs include biospecimens linked to clinical data and PROs. Finally, surveillance of an RLHCS may also be performed to identify temporal trends in PROs to estimate outcomes after implementation of new technologies.


===Dose selection and radiosensitivity===
==How is this framed legally, politically, and ethically?==
The use of tumor-specific genes and radiosensitivity to guided treatment decisions has already been established in human papilloma virus-associated squamous-cell carcinoma of the oropharynx.<ref name="ChenReduced17">{{cite journal |title=Reduced-dose radiotherapy for human papillomavirus-associated squamous-cell carcinoma of the oropharynx: A single-arm, phase 2 study |journal=The Lancet, Oncology |author=Chen, A.M.; Felix, C.; Wang, P.C. et al. |volume=18 |issue=6 |pages=803–11 |year=2017 |doi=10.1016/S1470-2045(17)30246-2 |pmid=28434660}}</ref> Numerous studies have looked at identifying genes that may have implications on tumor radiosensitivity or patient toxicity.<ref name="WestGenetics11">{{cite journal |title=Genetics and genomics of radiotherapy toxicity: Towards prediction |journal=Genome Medicine |author=West, C.M.; Barnett, G.C. |volume=3 |issue=8 |pages=52 |year=2011 |doi=10.1186/gm268 |pmid=21861849 |pmc=PMC3238178}}</ref><ref name="Torres-RocaPredict05">{{cite journal |title=Prediction of radiation sensitivity using a gene expression classifier |journal=Cancer Research |author=Torres-Roca, J.F.; Eschrich, S.; Zhao, H. et al. |volume=65 |issue=16 |pages=7169-76 |year=2005 |doi=10.1158/0008-5472.CAN-05-0656 |pmid=16103067}}</ref><ref name="ChistiakovGenetic08">{{cite journal |title=Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients |journal=Acta Oncologica |author=Chistiakov, D.A.; Voronova, N.V.; Chistiakov, P.A. |volume=47 |issue=5 |pages=809-24 |year=2008 |doi=10.1080/02841860801885969 |pmid=18568480}}</ref><ref name="EschrichAGene09">{{cite journal |title=A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation |journal=International Journal of Radiation Oncology, Biology, and Physics |author=Eschrich, S.A.; Pramana, J.; Zhang, H. et al. |volume=75 |issue=2 |pages=489-96 |year=2009 |doi=10.1016/j.ijrobp.2009.06.014 |pmid=19735873 |pmc=PMC3038688}}</ref> The identification of these genes and their potential implications has led to the creation of the fields of radiogenetics and radiogenomics. Efforts are currently underway to generate meaningful gene assays that will help predict tumor response to radiation. Eschrich ''et al.'' created a 10-gene model to calculate a radiosensitivity index and applied this to patients with head-and-neck, rectal, and esophageal cancer to help stratify patients into either responders or non-responders, with 80% sensitivity and 82% specificity.<ref name="EschrichAGene09" /> Similarly, Zhao ''et al.'' retrospectively created a 24-gene assay and applied this to risk matched patients who either received postoperative radiation or no radiation following prostatectomy. Patients with a high score on the gene index who received postoperative radiation were less likely to have distant metastasis at 10 years.<ref name="ZhaoDevelop16">{{cite journal |title=Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: A matched, retrospective analysis |journal=The Lancet, Oncology |author=Zhao, S.G.; Chang, S.L.; Spratt, D.E. et al. |volume=17 |issue=11 |pages=1612–20 |year=2016 |doi=10.1016/S1470-2045(16)30491-0 |pmid=27743920}}</ref>
The legal framework surrounding how the police and justice system use DNA analysis was devised to follow the creation of the FNAEG. For this reason, and in order to defuse fears and criticisms, the law only allows analyses using “non-coding” DNA so as to meet the initial objective of allowing identification without providing information about individuals. French law only provides the police DNA for identification purposes “within the framework of investigative measures or the preparation of a case during a judicial proceeding,{{efn|Art. 16.11 of the Civil Code}} in cases of missing persons{{efn|Art. 26, Domestic Security Guidance and Planning Act n° 95-73 of 21 January 1995}}, or, more recently, in the context of familial searches to allow “searches for persons directly related to [an] unknown person” who has left a stain at a crime scene (i.e., without determining phenotype).{{efn|This possibility was written into law in 2016 in article 796-56-1-1 of Act n° 2016-731 of 3 June 2016 strengthening provisions for the fight against organized crime, terrorism, and their financing, and improving the efficiency and guarantees of the criminal procedure.}}


As efforts to identify genes and gene assays that may be predictors of radiosensitivity continue to be validated, we will potentially be able to integrate these findings in dose selection and toxicity prediction for individual patients based on their native and tumor genetics. Scott and colleagues have recently described a genomics-based strategy for personalizing radiation therapy dose, which would support dose de-escalation for radiosensitive tumors.<ref name="ScottAGenome17">{{cite journal |title=A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study |journal=The Lancet, Oncology |author=Scott, J.G.; Berglund, A.; Schell, M.J. et al. |volume=18 |issue=2 |pages=202-211 |year=2017 |doi=10.1016/S1470-2045(16)30648-9 |pmid=27993569}}</ref> While the clinical implication of radiosensitivity assays are still developing, big data will be key to developing future assays rapidly, as well as incorporating the genomics tools into clinical decision-making. Big data provides an opportunity to refine molecular signatures based upon real-world data and to merge genomic assay results with other clinical data elements to optimize predictive analytics. An RLHCS would provide the ideal substrate for levering big data and CER to accelerate genomics-based discovery to make precision radiation oncology a reality.
Concerning the so-called “DNA Photofit” technique, in June 2014, France's highest court, the Court of Cassation, ruled admissible an expert report charged with providing “all useful elements relating to the suspect's visible morphological characteristics” based on stains collected after a rape in an investigation into a series of sexual assaults in Lyon between October 2012 and January 2014. The Court of Cassation's authorization of this practice in DNA analysis was the first in France. For judges and prosecutors, there is now set a legal precedent allowing them to authorize “DNA Photofits” when they consider this could help an investigation.


===Personalized treatment recommendations===
In legal terms, the emerging of new technical possibilities and their practical use create conflicting and parallel regimes. On one hand, “DNA Photofits” do not correspond to the legal frameworks devised in the 1990s. It does not provide identification, per se, but is rather an “assistance to the investigation,” as it uses coding DNA. One another hand, as science evolves, the law is falling out of step with the technical and scientific reality. New knowledge shows that some of the markers used by the FNAEG may in fact allow further information to be obtained about people regarding their predisposition to certain diseases, their genetic pathologies, and their “ethnic origin” (by continent or sub-continent).{{efn|For example, according to a study by the Telethon Institute of Genetics and Medicine, D2S1388, one of the markers used by the FNAEG, plays a determining role in the transmission of pseudohyperkalaemia, a rare genetic disease.<ref name="CarellaASecond04">{{cite journal |title=A second locus mapping to 2q35-36 for familial pseudohyperkalaemia |journal=European Journal of Human Genetics |author=Carella, M.; d'Adamo, A.P.; Grootenboer-Mignot, S. et al. |volume=12 |issue=12 |pages=1073–6 |year=2004 |doi=10.1038/sj.ejhg.5201280}}</ref> In 2011, a publication by Chinese researchers highlighted the association between marker D21S11-28.2 and coronary heart disease.<ref name="HuiNovel11">{{cite journal |title=Novel association analysis between 9 short tandem repeat loci polymorphisms and coronary heart disease based on a cross-validation design |journal=Atherosclerosis |author=Hui, L.; Jing, Y.; Rui, M.; Weijian, Y. |volume=218 |issue=1 |pages=151–5 |year=2011 |doi=10.1016/j.atherosclerosis.2011.05.024 |pmid=21703622}}</ref> A team of Portuguese researchers<ref name="PereiraPop11">{{cite journal |title=PopAffiliator: online calculator for individual affiliation to a major population group based on 17 autosomal short tandem repeat genotype profile |journal=International Journal of Legal Medicine |author=Pereira, L.; Alshamali, F.; Andreassen, R. et al. |volume=125 |issue=5 |pages=629–36 |year=2011 |doi=10.1007/s00414-010-0472-2 |pmid=20552217}}</ref> has developed an online calculator capable of correlating certain markers used in the FNAEG's DNA samples with individual affiliation to population groups (Sub-Saharan Africa, Eurasia, East Asia, North Africa, Near East, North America, South America, and Central America).}} Moreover, whereas at the FNAEG's inception it was considered unacceptable for the police to use medical information, certain professionals in police or justice now recognize that this information (whether genetic or not) can be useful in investigations (providing information about wanted persons' need for medication or healthcare, or about their physical appearance, etc.). Although there are no changes in the legal framework on this matter, the idea is spreading and the red line is, to some extend, and for some of the professionals, fading.
Radiation oncology is unique in that treatment plans for patients are often already technically and physically personalized due to patient-specific variations in anatomy, tumor characteristics, and stage. Since a patient’s treatment plan is usually based upon a CT scan in treatment position, radiation can be considered an inherently personalized form of medicine. However, treatment planning approaches and radiation doses are generally selected based upon class solution, with technical details such as beam arrangements and dose–volume constraints adherent to generalized rules. Multiple studies have already begun to look at how BDA methods such as machine learning and neural networks can be used to aid in dose optimization and toxicity prediction modeling in radiation oncology<ref name="KimPredict17" /><ref name="KimAText17">{{cite journal |title=A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study |journal=Journal of the Korean Physical Society |author=Kim, K.H.; Lee, S.; Shim, J.B. et al. |volume=71 |issue=4 |pages=231–7 |year=2017 |doi=10.3938/jkps.71.231}}</ref><ref name="ArimuraApplications16">{{cite journal |title=Applications of Machine Learning for Radiation Therapy |journal=Igaku Butsuri |author=Arimura, H.; Nakamoto, T. |volume=36 |issue=1 |pages=35–8 |year=2016 |doi=10.11323/jjmp.36.1_35 |pmid=28428495}}</ref><ref name="NicolaeEval17">{{cite journal |title=Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy |journal=International Journal of Radiation Oncology, Biology, and Physics |author=Nicolae, A.; Morton, G.; Chung, H. et al. |volume=97 |issue=4 |pages=822-829 |year=2017 |doi=10.1016/j.ijrobp.2016.11.036 |pmid=28244419}}</ref>, which could provide more optimal treatment plan alternatives for individual patients. As the data and technology behind RLHCS continues to progress, we will likely be able to utilize a full spectrum of patient-specific clinical factors, PROs, genomics, patient preference, and priorities, and a menu of treatment plan alternatives in order to optimize an individual patient’s radiation therapy. In order to deliver high quality, high impact insights into radiation oncology, it is important that large datasets include detailed technical information.
 
It is thus obvious that police uses of DNA data providing information about individuals' characteristics raise novel politic-ethical issues.<ref name="M'charekSilent08">{{cite journal |title=Silent witness, articulate collective: DNA evidence and the inference of visible traits |journal=Bioethics |author=M'charek, A. |volume=22 |issue=9 |pages=519-28 |year=2008 |doi=10.1111/j.1467-8519.2008.00699.x |pmid=18959734}}</ref><ref name="MacLeanForensic14">{{cite journal |title=Forensic DNA phenotyping in criminal investigations and criminal courts: Assessing and mitigating the dilemmas inherent in the science |journal=Recent Advances in DNA and Gene Sequences |author=MacLean, C.E.; Lamparello, A. |volume=8 |issue=2 |pages=104-12 |year=2014 |pmid=25687339}}</ref> In particular, it brings into play the issue of what constitutes private data<ref name="ToomApproaching16">{{cite journal |title=Approaching ethical, legal and social issues of emerging forensic DNA phenotyping (FDP) technologies comprehensively: Reply to 'Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes' by Manfred Kayser |journal=Forensic Science International Genetics |author=Toom, V.; Wienroth, M.; M'charek, A. et al. |volume=22 |pages=e1–e4 |year=2016 |doi=10.1016/j.fsigen.2016.01.010 |pmid=26832996}}</ref>—for certain geneticists, where “DNA Photofits” are concerned, externally visible characteristics do not fall into this category because they are visible.<ref name="KayserForensic15" /> Generally, as stated by some professionals during interviews, the question is “to know until where to go. And where to stop.“ Regarding the FNAEG and French law, in a case heard in June 2017, the European Court of Human Rights (ECHR) ruled that “interference with the applicant's right to respect for his private life had been disproportionate.”{{efn|Case of Aycaguer V. France, 22 June 2017, 8806/12, ECHR, Court (Fifth Section)}} The ECHR judgment ruled against France and underscored that French law regarding DNA date storage should be differentiated “according to the nature and seriousness of the offence committed."{{efn|See legal summary, available at [https://goo.gl/FcyuUM https://hudoc.echr.coe.int/eng#{%22itemid%22:[%22002-11703%22]} }}
 
In Germany, a contradictory dialogue between experts took place regarding Forensic DNA Phenotyping revealing public and political debate on the matter.<ref name="BuchananForensic18">{{cite journal |title=Forensic DNA phenotyping legislation cannot be based on “Ideal FDP”—A response to Caliebe, Krawczak and Kayser (2017) |journal=FSI Genetics |author=Buchanan, N.; Staubach, F.; Wienroth, M. et al. |volume=34 |pages=e13–e14 |year=2018 |doi=10.1016/j.fsigen.2018.01.009}}</ref> In France, despite the stakes involved and the spread of new usages of DNA techniques, no public debate has emerged in recent years concerning new uses of DNA in police work. In 2008, a private analysis [[laboratory]] offering indicative geo-genetic tests (''tests d'origine géo-génétique'' or TOGG) providing information about individuals' origin based on their DNA sparked a media debate that complicated the issue<ref name="VaillyThePolitics17">{{cite journal |title=The politics of suspects’ geo-genetic origin in France: The conditions, expression, and effects of problematisation |journal=BioSocieties |author=Vailly, J. |volume=12 |issue=1 |pages=66–88 |year=2017 |doi=10.1057/s41292-016-0028-x}}</ref>; however, the controversy soon died down. A few years later, Ministry of Justice instructions to judges and prosecutors discouraged the use of this technique, with no further debate. Since then, although the Court of Cassation's 2014 decision opened up the possibility of using an unprecedented practice, this has not generated any public debate or controversy.
 
“DNA Photofits” have received some media coverage{{efn|A search conducted on the press database Europresse for the period 2010 to 2018 brought up around 70 pieces published mentioning the terms “DNA Photofits” or “Genetic photofits”.}}, but this has mainly been to underscore the technical process involved, echoing the fiction conveyed by television series that have made the use of genetic techniques in criminal investigations seem commonplace and particularly efficient. Our sociological fieldwork has revealed, however, that there was organized debate among judges and prosecutors between 2013 and 2014. At the time, the investigating judge who had for the first time ordered the analysis of the suspect's visible morphological characteristics referred the case to the examining chamber himself, to obtain a verdict on whether the expert report he had requested was legal. Although the examining chamber approved the report, the public prosecutor brought the issue before the Court of Cassation—the highest legal authority in France—in order to ensure the final nature of the decision. The Court of Cassation ruled that a judge could have recourse to such analyses. Following this verdict, several bodies consulted by the Ministry of Justice{{efn|These bodies were the Commission nationale consultative des droits de l'homme (CNCDH – National consultative committee on human rights) and the approval committee for people authorized to conduct identification procedures using DNA profiles in the context of legal proceedings or the extrajudicial procedure for identifying deceased persons.}} provided opinions underscoring the need for this technique to be written into and regulated by the law. This has not been implemented to date. After being authorized for several years under a temporary protocol, familial searches allowing “genetic proximity testing”<ref name="PrainsackGenetic10">{{cite book |chapter=Chapter 2: Key issues in DNA profiling and databasing: Implications for governance |title=Genetic Suspects: Global Governance of Forensic DNA Profiling and Databasing |author=Prainsack, B. |editor=Hindmarsh, R.; Prainsack, B. |publisher=Cambridge University Press |pages=15–39 |year=2010 |isbn=9780521519434}}</ref> were written into law in 2016. However, the Court of Cassation's judgment on DNA analysis to provide “all useful elements relating to a suspect's visible morphological characteristics” has not been brought up for parliamentary debate to be included in the law. There has been no political management of the question at the state level, nor has the issue been included in the general debate organized by the National Consultative Council of Ethics (Comité Consultatif National d'Ethique) in 2018 regarding the revision of laws on bio-ethics.


==Conclusion==
==Conclusion==
Much of the excitement regarding big data has centered on potential for genomic discovery, high-level radiation treatment planning, and leveraging EMRs to identify associations among factors that may provide new insights into potential causal relationships that can be further studied to accelerate progress in cancer care. Although these are certainly promising areas for discovery, we most eagerly anticipate the power of big data to connect a broad range of characteristics to accelerate evidence generation and inform personalized decision-making. We envision the use of big data and CER methods to inform the individual decisions of patients and providers by synthesizing clinical and genomic data and querying an RLHCS for the latest data on effectiveness of treatment options in relevant subgroups of patients.
The use of these new technological and scientific techniques plays a significant role in guiding how we engage with the world<ref name="WilliamsSocial17">{{cite journal |title=Social and ethical aspects of forensic genetics: A critical review |journal=Forensic Science Review |author=Williams, R.; Wienroth, M. |volume=29 |issue=2 |pages=145–69 |year=2017 |pmid=28691916}}</ref>, just as it redefines the production of identity translated into information<ref name="AasTheBody06">{{cite journal |title=‘The body does not lie’: Identity, risk and trust in technoculture |journal=Crime, Media, Culture: An International Journal |author=Aas, K.F. |volume=2 |issue=2 |pages=143-158 |year=2006 |doi=10.1177/1741659006065401}}</ref> and structures the way sensitive information about individuals is used and circulated. Despite these stakes, and the initial caution that surrounded the creation of the national automated DNA database, it has not gone hand-in-hand with collective political and ethical debate. This raises questions about the conditions for the existence or for the absence of political controversies that call for further sociological investigations about the framing of the issue and the social and political logic at play.
 
As the uses of these techniques are developing in police practices, this absence of collective management of the issue refers the professional to forms of local arbitration. Our fieldwork has shown that they are aware that these practices raise issues and therefore devise ethical frameworks for their own use of DNA. As a consequence, in this field, as it is the case in others, ethical issues are addressed in a fragmented manner as endogenous ethical frameworks are “cobbled together” by professionals as a function of their practices and needs. Each institution, laboratory, and in some cases each individual, is crafting a frame and a perimeter of limits to what can be done according to their understanding and appreciation of the legal setting, the practical utility of actions and the ethical constraints perceived.
 
The ECHR's recent ruling against France regarding the FNAEG may force lawmakers to reach a verdict on this issue, thereby triggering what seems like necessary public debate on forensic use of DNA. The new possibilities provided by genetic technologies point to the need for promoting dialogue among the various professionals using this technology in police work (forensic teams and geneticists working with them, police investigators, private laboratories, prosecutors, judges, etc.), but also with healthcare professionals—who already have experience of the institutionalized management of ethical considerations relating to their practices in genetics—and, more broadly, in society as a whole.


==Acknowledgements==
==Acknowledgements==
Authors are grateful to Lucy Garnier for translating this article from French.
===Author contributions===
===Author contributions===
Both authors contributed to the development and editing of the manuscript and approved the final submitted version.
GK is the main contributor. JV is the head of the research programme and collaborated to the writing of the article.
 
===Funding===
This research was financed by the National Research Agency (ANR) in France (Project FITEGE, contract: ANR-14-CE29-0014).


===Conflict of interest statement===
===Conflict of interest statement===
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


 
==Footnotes==
{{reflist|group=lower-alpha}}


==References==
==References==
Line 77: Line 87:


==Notes==
==Notes==
This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added.  
This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. Footnotes were originally numbered but have been converted to lowercase alpha for this version. The link in footnote j had to be applied to Google Shortener because the HUDOC uses invalid characters in their URLs, and this wiki's footnote system breaks when the original URL is used.


<!--Place all category tags here-->
<!--Place all category tags here-->
[[Category:LIMSwiki journal articles (added in 2018)‎]]
[[Category:LIMSwiki journal articles (added in 2018)‎]]
[[Category:LIMSwiki journal articles (all)‎]]
[[Category:LIMSwiki journal articles (all)‎]]
[[Category:LIMSwiki journal articles on big data]]
[[Category:LIMSwiki journal articles on forensic science]]
[[Category:LIMSwiki journal articles on health informatics‎‎]]
[[Category:LIMSwiki journal articles on health informatics‎‎]]

Revision as of 18:20, 13 August 2018

Sandbox begins below

Full article title How could the ethical management of health data in the medical field inform police use of DNA?
Journal Frontiers in Public Health
Author(s) Krikorian, Gaelle; Vailly, Joëlle
Author affiliation(s) Institut de recherche interdisciplinaire sur les enjeux sociaux (IRIS)
Primary contact Email: gaelle.krikorian@gmail.com
Editors Lefèvre, Thomas
Year published 2018
Volume and issue 6
Page(s) 154
DOI 10.3389/fpubh.2018.00154
ISSN 2296-2565
Distribution license Creative Commons Attribution 4.0 International
Website https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/full
Download https://www.frontiersin.org/articles/10.3389/fpubh.2018.00154/pdf (PDF)

Introduction

Various events paved the way for the production of ethical norms regulating biomedical practices, from the Nuremberg Code (1947)—produced by the international trial of Nazi regime leaders and collaborators—and the Declaration of Helsinki by the World Medical Association (1964) to the invention of the term “bioethics” by American biologist Van Rensselaer Potter.[1] The ethics of biomedicine has given rise to various controversies—particularly in the fields of newborn screening[2], prenatal screening[3], and cloning[4]—resulting in the institutionalization of ethical questions in the biomedical world of genetics. In 1994, France passed legislation (commonly known as the “bioethics laws”) to regulate medical practices in genetics. The medical community has also organized itself in order to manage ethical issues relating to its decisions, with a view to handling “practices with many strong uncertainties” and enabling clinical judgments and decisions to be made not by individual practitioners but rather by multidisciplinary groups drawing on different modes of judgment and forms of expertise.[5] Thus, the biomedical approach to genetics has been characterized by various debates and the existence of public controversies.

In the judicial sphere, the situation is very different. Since the end of the 1990s, developments in biomedical research have led to genetic data being used in police work and legal proceedings. Today, forensic science is omnipresent in investigations, not just in complex criminal cases but also routinely in cases of “minor” or “mass” delinquency. Genetics, which certainly receives the most media coverage among the techniques involved[6], has taken on considerable importance.[7] However, although very similar techniques are used in biomedicine and police work (DNA amplification, sequencing, etc.), the forms of collective management surrounding them are very different, as well as the ethico-legal frameworks and their evolution, as this text will demonstrate.

Keywords: DNA, police, ethics, genetic technologies, criminal investigations

Nature of the information and genetic data produced in the police sphere

In police work in France, data produced by DNA are currently compiled and used in two different ways: first, to create files on individuals in the FNAEG or Fichier national automatisé des empreintes génétiques (national automated DNA database) and, second, in order to obtain information about perpetrators of crimes (their appearance, their origin, their kinship links to other individuals).

Police use of DNA has been allowed in France since the 1998 law providing for the creation of the FNAEG. A DNA profile corresponds to a “specific individual alphanumeric combination”[8] that is the numerical encoding of analysis of DNA segments. This profile is the result of analysis of DNA fragments using genetic markers. This analysis can be carried out on a minute amount of genetic material (saliva, blood, sperm, hair, contact, etc.). It identifies the presence of sequences specific to an individual that differentiate them from any other person (with the exception of an identical twin) but that are not supposed to provide any phenotypical information (about appearance, geographical origin, or diseases).[a] Such profiles therefore make individuals “identifiable in their uniqueness.”[9] During investigations, DNA is collected from suspects or unidentified stains left on crime scenes or people and the results of this analysis are entered into the database. Identification through the FNAEG was originally restricted to a limited number of crimes—those of a sexual nature, as part of the law relating to the prevention and punishment of sexual crimes and the protection of minors. This remit has progressively been extended to include the vast majority of crimes and offences[b], leading to the routine use of DNA in investigations.[c] As a result of this evolution, there has been a substantial increase in the number of persons with files in the FNAEG, more than three million as of late 2015.[d]

New techniques have also emerged in recent years. It is now possible to obtain indications about an individual's physical appearance based on a sample of his/her DNA[10][11]: the analyses in question provide statistical information on eye, hair, and skin color, etc. These techniques are more exploratory and aim not to match DNA with an identity by comparison but to determine the characteristics of the perpetrator of a crime. These data result from analysis of several dozen DNA markers that, unlike the FNAEG's data, are selected deliberately so that they can provide information about a person's physical appearance. They are therefore aimed at “generating a suspect”[12] but because the information about this person's features are incomplete (e.g., a person with blue eyes, fair skin, light brown hair, and of European “bio-geographical” ancestry), they define “target populations of interest” to guide police investigations.[13] Several private and public laboratories in France now produce what professionals often refer to as “DNA photofits”; it is estimated that several dozen such analyses have been carried out since 2014 as part of investigations.

How is this framed legally, politically, and ethically?

The legal framework surrounding how the police and justice system use DNA analysis was devised to follow the creation of the FNAEG. For this reason, and in order to defuse fears and criticisms, the law only allows analyses using “non-coding” DNA so as to meet the initial objective of allowing identification without providing information about individuals. French law only provides the police DNA for identification purposes “within the framework of investigative measures or the preparation of a case during a judicial proceeding,”[e] in cases of missing persons[f], or, more recently, in the context of familial searches to allow “searches for persons directly related to [an] unknown person” who has left a stain at a crime scene (i.e., without determining phenotype).[g]

Concerning the so-called “DNA Photofit” technique, in June 2014, France's highest court, the Court of Cassation, ruled admissible an expert report charged with providing “all useful elements relating to the suspect's visible morphological characteristics” based on stains collected after a rape in an investigation into a series of sexual assaults in Lyon between October 2012 and January 2014. The Court of Cassation's authorization of this practice in DNA analysis was the first in France. For judges and prosecutors, there is now set a legal precedent allowing them to authorize “DNA Photofits” when they consider this could help an investigation.

In legal terms, the emerging of new technical possibilities and their practical use create conflicting and parallel regimes. On one hand, “DNA Photofits” do not correspond to the legal frameworks devised in the 1990s. It does not provide identification, per se, but is rather an “assistance to the investigation,” as it uses coding DNA. One another hand, as science evolves, the law is falling out of step with the technical and scientific reality. New knowledge shows that some of the markers used by the FNAEG may in fact allow further information to be obtained about people regarding their predisposition to certain diseases, their genetic pathologies, and their “ethnic origin” (by continent or sub-continent).[h] Moreover, whereas at the FNAEG's inception it was considered unacceptable for the police to use medical information, certain professionals in police or justice now recognize that this information (whether genetic or not) can be useful in investigations (providing information about wanted persons' need for medication or healthcare, or about their physical appearance, etc.). Although there are no changes in the legal framework on this matter, the idea is spreading and the red line is, to some extend, and for some of the professionals, fading.

It is thus obvious that police uses of DNA data providing information about individuals' characteristics raise novel politic-ethical issues.[17][18] In particular, it brings into play the issue of what constitutes private data[19]—for certain geneticists, where “DNA Photofits” are concerned, externally visible characteristics do not fall into this category because they are visible.[11] Generally, as stated by some professionals during interviews, the question is “to know until where to go. And where to stop.“ Regarding the FNAEG and French law, in a case heard in June 2017, the European Court of Human Rights (ECHR) ruled that “interference with the applicant's right to respect for his private life had been disproportionate.”[i] The ECHR judgment ruled against France and underscored that French law regarding DNA date storage should be differentiated “according to the nature and seriousness of the offence committed."[j]

In Germany, a contradictory dialogue between experts took place regarding Forensic DNA Phenotyping revealing public and political debate on the matter.[20] In France, despite the stakes involved and the spread of new usages of DNA techniques, no public debate has emerged in recent years concerning new uses of DNA in police work. In 2008, a private analysis laboratory offering indicative geo-genetic tests (tests d'origine géo-génétique or TOGG) providing information about individuals' origin based on their DNA sparked a media debate that complicated the issue[21]; however, the controversy soon died down. A few years later, Ministry of Justice instructions to judges and prosecutors discouraged the use of this technique, with no further debate. Since then, although the Court of Cassation's 2014 decision opened up the possibility of using an unprecedented practice, this has not generated any public debate or controversy.

“DNA Photofits” have received some media coverage[k], but this has mainly been to underscore the technical process involved, echoing the fiction conveyed by television series that have made the use of genetic techniques in criminal investigations seem commonplace and particularly efficient. Our sociological fieldwork has revealed, however, that there was organized debate among judges and prosecutors between 2013 and 2014. At the time, the investigating judge who had for the first time ordered the analysis of the suspect's visible morphological characteristics referred the case to the examining chamber himself, to obtain a verdict on whether the expert report he had requested was legal. Although the examining chamber approved the report, the public prosecutor brought the issue before the Court of Cassation—the highest legal authority in France—in order to ensure the final nature of the decision. The Court of Cassation ruled that a judge could have recourse to such analyses. Following this verdict, several bodies consulted by the Ministry of Justice[l] provided opinions underscoring the need for this technique to be written into and regulated by the law. This has not been implemented to date. After being authorized for several years under a temporary protocol, familial searches allowing “genetic proximity testing”[22] were written into law in 2016. However, the Court of Cassation's judgment on DNA analysis to provide “all useful elements relating to a suspect's visible morphological characteristics” has not been brought up for parliamentary debate to be included in the law. There has been no political management of the question at the state level, nor has the issue been included in the general debate organized by the National Consultative Council of Ethics (Comité Consultatif National d'Ethique) in 2018 regarding the revision of laws on bio-ethics.

Conclusion

The use of these new technological and scientific techniques plays a significant role in guiding how we engage with the world[23], just as it redefines the production of identity translated into information[24] and structures the way sensitive information about individuals is used and circulated. Despite these stakes, and the initial caution that surrounded the creation of the national automated DNA database, it has not gone hand-in-hand with collective political and ethical debate. This raises questions about the conditions for the existence or for the absence of political controversies that call for further sociological investigations about the framing of the issue and the social and political logic at play.

As the uses of these techniques are developing in police practices, this absence of collective management of the issue refers the professional to forms of local arbitration. Our fieldwork has shown that they are aware that these practices raise issues and therefore devise ethical frameworks for their own use of DNA. As a consequence, in this field, as it is the case in others, ethical issues are addressed in a fragmented manner as endogenous ethical frameworks are “cobbled together” by professionals as a function of their practices and needs. Each institution, laboratory, and in some cases each individual, is crafting a frame and a perimeter of limits to what can be done according to their understanding and appreciation of the legal setting, the practical utility of actions and the ethical constraints perceived.

The ECHR's recent ruling against France regarding the FNAEG may force lawmakers to reach a verdict on this issue, thereby triggering what seems like necessary public debate on forensic use of DNA. The new possibilities provided by genetic technologies point to the need for promoting dialogue among the various professionals using this technology in police work (forensic teams and geneticists working with them, police investigators, private laboratories, prosecutors, judges, etc.), but also with healthcare professionals—who already have experience of the institutionalized management of ethical considerations relating to their practices in genetics—and, more broadly, in society as a whole.

Acknowledgements

Authors are grateful to Lucy Garnier for translating this article from French.

Author contributions

GK is the main contributor. JV is the head of the research programme and collaborated to the writing of the article.

Funding

This research was financed by the National Research Agency (ANR) in France (Project FITEGE, contract: ANR-14-CE29-0014).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

  1. The Order of 10 August 2015 increased the number of markers analyzed to 21; policemen and analysis laboratories had three years to comply with this new requirement.
  2. Act n°98-468 of 17 June 1998 relative to the punishment of sexual crimes and the protection of minors introduced article 706-54 into the Code of Criminal Procedure making provision for the creation of an automated national database to centralize the DNA profiles of persons convicted of offences of a sexual nature. The remit of the database was then extended on several occasions. In 2001, it included serious crimes against persons. In 2003, the law on internal security extended it to persons convicted of or implicated in crimes and offences against persons or property.
  3. Collecting DNA samples in investigations is now the rule. An ad hoc body of staff has been trained over the past 15 years that almost systematically processes crime scenes.
  4. This figure was provided to the French Parliament by the Ministry of the Interior following a question by parliamentarian Sergio Coronado (member of the “Ecologist” parliamentary group) (http://questions.assemblee-nationale.fr/q14/14-79728QE.htm).
  5. Art. 16.11 of the Civil Code
  6. Art. 26, Domestic Security Guidance and Planning Act n° 95-73 of 21 January 1995
  7. This possibility was written into law in 2016 in article 796-56-1-1 of Act n° 2016-731 of 3 June 2016 strengthening provisions for the fight against organized crime, terrorism, and their financing, and improving the efficiency and guarantees of the criminal procedure.
  8. For example, according to a study by the Telethon Institute of Genetics and Medicine, D2S1388, one of the markers used by the FNAEG, plays a determining role in the transmission of pseudohyperkalaemia, a rare genetic disease.[14] In 2011, a publication by Chinese researchers highlighted the association between marker D21S11-28.2 and coronary heart disease.[15] A team of Portuguese researchers[16] has developed an online calculator capable of correlating certain markers used in the FNAEG's DNA samples with individual affiliation to population groups (Sub-Saharan Africa, Eurasia, East Asia, North Africa, Near East, North America, South America, and Central America).
  9. Case of Aycaguer V. France, 22 June 2017, 8806/12, ECHR, Court (Fifth Section)
  10. See legal summary, available at https://hudoc.echr.coe.int/eng#{%22itemid%22:[%22002-11703%22}
  11. A search conducted on the press database Europresse for the period 2010 to 2018 brought up around 70 pieces published mentioning the terms “DNA Photofits” or “Genetic photofits”.
  12. These bodies were the Commission nationale consultative des droits de l'homme (CNCDH – National consultative committee on human rights) and the approval committee for people authorized to conduct identification procedures using DNA profiles in the context of legal proceedings or the extrajudicial procedure for identifying deceased persons.

References

  1. Potter, V.R. (1970). "Bioethics, the science of survival". Perspectives in Biology and Medicine 14 (1): 127–53. doi:10.1353/pbm.1970.0015. 
  2. Vailly, J. (2013). The Birth of a Genetics Policy: Social Issues of Newborn Screening. Routledge. pp. 240. ISBN 9781472422729. 
  3. Isambert, F.A. (1980). "Éthique et génétique: De l'utopie eugénique au contrôle des malformations congénitales". Revue française de sociologie 21 (3): 331–54. doi:10.2307/3320930. 
  4. Pulman, B. (2005). "Les enjeux du clonage". Revue française de sociologie 46 (3): 413–42. doi:10.3917/rfs.463.0413. 
  5. Bourret, P.; Rabeharisoa, V. (2008). "Décision et jugement médicaux en situation de forte incertitude : l’exemple de deux pratiques cliniques à l’épreuve de la génétique". Sciences sociales et santé 26 (1): 128. doi:10.3917/sss.261.0033. 
  6. Brewer, P.R.; Ley, B.L. (2009). "Media Use and Public Perceptions of DNA Evidence". Science Communication 32 (1): 93–117. doi:10.1177/1075547009340343. 
  7. Williams, R.; Johnson, P. (2008). Genetic Policing: The Uses of DNA in Police Investigations. Willan. pp. 208. ISBN 9781843922049. 
  8. Cabal, C.; Le Déaut, J.-Y.; Revol, H. (2001). Rapport sur la valeur scientifique de l'utilisation des empreintes génétiques dans le domaine judiciaire. Assemblée nationale. ISBN 2111150177. 
  9. Bonniol, J.-L.; Darlu, P. (2014). "L’ADN au service d’une nouvelle quête des ancêtres?". Civilisations 63: 201–19. doi:10.4000/civilisations.3747. 
  10. Kayser, M.; de Knijff, P. (2011). "Improving human forensics through advances in genetics, genomics and molecular biology". Nature Reviews Genetics 12 (3): 179–92. doi:10.1038/nrg2952. PMID 21331090. 
  11. 11.0 11.1 Kayser, M. (2015). "Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes". Forensic Science International Genetics 18: 33–48. doi:10.1016/j.fsigen.2015.02.003. PMID 25716572. 
  12. M'charek, A. (2013). "Beyond Fact or Fiction: On the Materiality of Race in Practice". Cultural Anthropology 28 (3): 420–42. doi:10.1111/cuan.12012. 
  13. Caliebe, A.; Krawczak, M.; Kayser, M. (2018). "Predictive values in Forensic DNA Phenotyping are not necessarily prevalence-dependent". FSI Genetics 33: e7–e8. doi:10.1016/j.fsigen.2017.11.006. 
  14. Carella, M.; d'Adamo, A.P.; Grootenboer-Mignot, S. et al. (2004). "A second locus mapping to 2q35-36 for familial pseudohyperkalaemia". European Journal of Human Genetics 12 (12): 1073–6. doi:10.1038/sj.ejhg.5201280. 
  15. Hui, L.; Jing, Y.; Rui, M.; Weijian, Y. (2011). "Novel association analysis between 9 short tandem repeat loci polymorphisms and coronary heart disease based on a cross-validation design". Atherosclerosis 218 (1): 151–5. doi:10.1016/j.atherosclerosis.2011.05.024. PMID 21703622. 
  16. Pereira, L.; Alshamali, F.; Andreassen, R. et al. (2011). "PopAffiliator: online calculator for individual affiliation to a major population group based on 17 autosomal short tandem repeat genotype profile". International Journal of Legal Medicine 125 (5): 629–36. doi:10.1007/s00414-010-0472-2. PMID 20552217. 
  17. M'charek, A. (2008). "Silent witness, articulate collective: DNA evidence and the inference of visible traits". Bioethics 22 (9): 519-28. doi:10.1111/j.1467-8519.2008.00699.x. PMID 18959734. 
  18. MacLean, C.E.; Lamparello, A. (2014). "Forensic DNA phenotyping in criminal investigations and criminal courts: Assessing and mitigating the dilemmas inherent in the science". Recent Advances in DNA and Gene Sequences 8 (2): 104-12. PMID 25687339. 
  19. Toom, V.; Wienroth, M.; M'charek, A. et al. (2016). "Approaching ethical, legal and social issues of emerging forensic DNA phenotyping (FDP) technologies comprehensively: Reply to 'Forensic DNA phenotyping: Predicting human appearance from crime scene material for investigative purposes' by Manfred Kayser". Forensic Science International Genetics 22: e1–e4. doi:10.1016/j.fsigen.2016.01.010. PMID 26832996. 
  20. Buchanan, N.; Staubach, F.; Wienroth, M. et al. (2018). "Forensic DNA phenotyping legislation cannot be based on “Ideal FDP”—A response to Caliebe, Krawczak and Kayser (2017)". FSI Genetics 34: e13–e14. doi:10.1016/j.fsigen.2018.01.009. 
  21. Vailly, J. (2017). "The politics of suspects’ geo-genetic origin in France: The conditions, expression, and effects of problematisation". BioSocieties 12 (1): 66–88. doi:10.1057/s41292-016-0028-x. 
  22. Prainsack, B. (2010). "Chapter 2: Key issues in DNA profiling and databasing: Implications for governance". In Hindmarsh, R.; Prainsack, B.. Genetic Suspects: Global Governance of Forensic DNA Profiling and Databasing. Cambridge University Press. pp. 15–39. ISBN 9780521519434. 
  23. Williams, R.; Wienroth, M. (2017). "Social and ethical aspects of forensic genetics: A critical review". Forensic Science Review 29 (2): 145–69. PMID 28691916. 
  24. Aas, K.F. (2006). "‘The body does not lie’: Identity, risk and trust in technoculture". Crime, Media, Culture: An International Journal 2 (2): 143-158. doi:10.1177/1741659006065401. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. Footnotes were originally numbered but have been converted to lowercase alpha for this version. The link in footnote j had to be applied to Google Shortener because the HUDOC uses invalid characters in their URLs, and this wiki's footnote system breaks when the original URL is used.