Difference between revisions of "User:Shawndouglas/sandbox/sublevel13"

From LIMSWiki
Jump to navigationJump to search
(Replaced content with "<div class="nonumtoc">__TOC__</div> {{ombox | type = notice | style = width: 960px; | text = This is sublevel13 of my sandbox, where I play with features and...")
Tag: Replaced
 
(54 intermediate revisions by the same user not shown)
Line 8: Line 8:
==Sandbox begins below==
==Sandbox begins below==
<div class="nonumtoc">__TOC__</div>
<div class="nonumtoc">__TOC__</div>
[[File:|right|520px]]
'''Title''': ''Why are the FAIR data principles increasingly important to research laboratories and their software?''
'''Author for citation''': Shawn E. Douglas
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
'''Publication date''': May 2024
==Introduction==
==What are the FAIR data principles?==
The [[Journal:The FAIR Guiding Principles for scientific data management and stewardship|FAIR data principles]] were published by Wilkinson ''et al.'' in 2016 as a stakeholder collaboration driven to see research "objects" (i.e., research data and [[information]] of all shapes and formats) become more universally findable, accessible, interoperable, and reusable (FAIR) by both machines and people.<ref name="WilkinsonTheFAIR16">{{Cite journal |last=Wilkinson |first=Mark D. |last2=Dumontier |first2=Michel |last3=Aalbersberg |first3=IJsbrand Jan |last4=Appleton |first4=Gabrielle |last5=Axton |first5=Myles |last6=Baak |first6=Arie |last7=Blomberg |first7=Niklas |last8=Boiten |first8=Jan-Willem |last9=da Silva Santos |first9=Luiz Bonino |last10=Bourne |first10=Philip E. |last11=Bouwman |first11=Jildau |date=2016-03-15 |title=The FAIR Guiding Principles for scientific data management and stewardship |url=https://www.nature.com/articles/sdata201618 |journal=Scientific Data |language=en |volume=3 |issue=1 |pages=160018 |doi=10.1038/sdata.2016.18 |issn=2052-4463 |pmc=PMC4792175 |pmid=26978244}}</ref> The authors released the FAIR principles while recognizing that "one of the grand challenges of data-intensive science ... is to improve knowledge discovery through assisting both humans and their computational agents in the discovery of, access to, and integration and analysis of task-appropriate scientific data and other scholarly digital objects."<ref name="WilkinsonTheFAIR16" /> Since being published, other researchers have taken the somewhat broad set of principles and refined them to their own scientific disciplines, as well as to other types of research objects, including the research software being used by those researchers to generate research objects.<ref name="NIHPubMedSearch">{{cite web |url=https://pubmed.ncbi.nlm.nih.gov/?term=fair+data+principles |title=fair data principles |work=PubMed Search |publisher=National Institutes of Health, National Library of Medicine |accessdate=30 April 2024}}</ref><ref>{{Cite journal |last=Hasselbring |first=Wilhelm |last2=Carr |first2=Leslie |last3=Hettrick |first3=Simon |last4=Packer |first4=Heather |last5=Tiropanis |first5=Thanassis |date=2020-02-25 |title=From FAIR research data toward FAIR and open research software |url=https://www.degruyter.com/document/doi/10.1515/itit-2019-0040/html |journal=it - Information Technology |language=en |volume=62 |issue=1 |pages=39–47 |doi=10.1515/itit-2019-0040 |issn=2196-7032}}</ref><ref name="GruenpeterFAIRPlus20">{{Cite web |last=Gruenpeter, M. |date=23 November 2020 |title=FAIR + Software: Decoding the principles |url=https://www.fairsfair.eu/sites/default/files/FAIR%20%2B%20software.pdf |format=PDF |publisher=FAIRsFAIR “Fostering FAIR Data Practices In Europe” |accessdate=30 April 2024}}</ref><ref>{{Cite journal |last=Barker |first=Michelle |last2=Chue Hong |first2=Neil P. |last3=Katz |first3=Daniel S. |last4=Lamprecht |first4=Anna-Lena |last5=Martinez-Ortiz |first5=Carlos |last6=Psomopoulos |first6=Fotis |last7=Harrow |first7=Jennifer |last8=Castro |first8=Leyla Jael |last9=Gruenpeter |first9=Morane |last10=Martinez |first10=Paula Andrea |last11=Honeyman |first11=Tom |date=2022-10-14 |title=Introducing the FAIR Principles for research software |url=https://www.nature.com/articles/s41597-022-01710-x |journal=Scientific Data |language=en |volume=9 |issue=1 |pages=622 |doi=10.1038/s41597-022-01710-x |issn=2052-4463 |pmc=PMC9562067 |pmid=36241754}}</ref><ref>{{Cite journal |last=Patel |first=Bhavesh |last2=Soundarajan |first2=Sanjay |last3=Ménager |first3=Hervé |last4=Hu |first4=Zicheng |date=2023-08-23 |title=Making Biomedical Research Software FAIR: Actionable Step-by-step Guidelines with a User-support Tool |url=https://www.nature.com/articles/s41597-023-02463-x |journal=Scientific Data |language=en |volume=10 |issue=1 |pages=557 |doi=10.1038/s41597-023-02463-x |issn=2052-4463 |pmc=PMC10447492 |pmid=37612312}}</ref><ref>{{Cite journal |last=Du |first=Xinsong |last2=Dastmalchi |first2=Farhad |last3=Ye |first3=Hao |last4=Garrett |first4=Timothy J. |last5=Diller |first5=Matthew A. |last6=Liu |first6=Mei |last7=Hogan |first7=William R. |last8=Brochhausen |first8=Mathias |last9=Lemas |first9=Dominick J. |date=2023-02-06 |title=Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software |url=https://link.springer.com/10.1007/s11306-023-01974-3 |journal=Metabolomics |language=en |volume=19 |issue=2 |pages=11 |doi=10.1007/s11306-023-01974-3 |issn=1573-3890}}</ref>
But why are research laboratories increasingly pushing for more findable, accessible, interoperable, and reusable research objects and software? The short answer, as evidenced by the Wilkinson ''et al.'' quote above is that greater innovation can be gained through improved knowledge discovery. The discovery process necessary for that greater innovation—whether through traditional research methods or [[artificial intelligence]] (AI)-driven methods—is enhanced when research objects and software are compatible with the core ideas of FAIR.<ref name="WilkinsonTheFAIR16" /><ref name="OlsenEmbracing23">{{cite web |url=https://www.pharmasalmanac.com/articles/embracing-fair-data-on-the-path-to-ai-readiness |title=Embracing FAIR Data on the Path to AI-Readiness |author=Olsen, C. |work=Pharma's Almanac |date=01 September 2023 |accessdate=03 May 2024}}</ref><ref name="HuertaFAIRForAI23">{{Cite journal |last=Huerta |first=E. A. |last2=Blaiszik |first2=Ben |last3=Brinson |first3=L. Catherine |last4=Bouchard |first4=Kristofer E. |last5=Diaz |first5=Daniel |last6=Doglioni |first6=Caterina |last7=Duarte |first7=Javier M. |last8=Emani |first8=Murali |last9=Foster |first9=Ian |last10=Fox |first10=Geoffrey |last11=Harris |first11=Philip |date=2023-07-26 |title=FAIR for AI: An interdisciplinary and international community building perspective |url=https://www.nature.com/articles/s41597-023-02298-6 |journal=Scientific Data |language=en |volume=10 |issue=1 |pages=487 |doi=10.1038/s41597-023-02298-6 |issn=2052-4463 |pmc=PMC10372139 |pmid=37495591}}</ref>
A slightly longer answer, suitable for a Q&A topic, requires looking at a few more details of the FAIR principles as applied to both research objects and research software. Research laboratories, whether located in an organization or contracted out as third parties, exist to innovate. That innovation can come in the form of discovering new materials that may or may not have a future application, developing a pharmaceutical to improve patient outcomes for a particular disease, or modifying (for some sort of improvement) an existing food or beverage recipe, among others. In academic research labs, this usually looks like knowledge advancement and the publishing of research results, whereas in industry research labs, this typically looks like more practical applications of research concepts to new or existing products or services. In both cases, research software was likely involved at some point, whether it be something like a researcher-developed [[bioinformatics]] application or a commercial vendor-developed [[electronic laboratory notebook]] (ELN).
Regarding research objects themselves, the FAIR principles essentially say "vast amounts of data and information in largely heterogeneous formats spread across disparate sources both electronic and paper make modern research workflows difficult, tedious, and at times impossible. Further, repeatability, reproducibility, and replicability of published (from academic research organizations) or internal (for industry research organizations) research results is at risk, giving less confidence to academic peers in the published research, or less confidence to critical stakeholders in the viability of a researched prototype." As such, research objects (which include not only their inherent data and information but also any [[metadata]] that describe features of that data and information) need to be:
* ''findable'', with globally unique and persistent identifiers, rich metadata that link to the identifier of the data described, and an ability to be indexed as an effectively searchable resource;
* ''accessible'', being able to be retrieved (including metadata of data that is no longer available) by identifiers using secure standardized communication protocols that are open, free, and universally implementable with authentication and authorization mechanisms;
* ''interoperable'', represented using formal, accessible, shared, and relevant language models and vocabularies that abide by FAIR principles, as well as with qualified linkage to other metadata; and
* ''reusable'',
==References==
{{Reflist|colwidth=30em}}
<!---Place all category tags here-->

Latest revision as of 21:57, 15 June 2024

Sandbox begins below