Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text.)
 
(41 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Nambiar BigDataCogComp22 6-4.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Signoroni NatComm23 14.png|240px]]</div>
'''"[[Journal:An overview of data warehouse and data lake in modern enterprise data management|An overview of data warehouse and data lake in modern enterprise data management]]"'''
'''"[[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]"'''


Data is the lifeblood of any organization. In today’s world, organizations recognize the vital role of data in modern [[business intelligence]] systems for making meaningful decisions and staying competitive in the field. Efficient and optimal data analytics provides a competitive edge to its performance and services. Major organizations generate, collect, and process vast amounts of data, falling under the category of "big data." [[Information management|Managing]] and [[Data analysis|analyzing]] the sheer volume and variety of big data is a cumbersome process. At the same time, proper utilization of the vast collection of an organization’s [[information]] can generate meaningful insights into business tactics. In this regard, two of the more popular data management systems in the area of big data analytics—the [[data warehouse]] and [[data lake]]—act as platforms to accumulate the big data generated and used by organizations ... ('''[[Journal:An overview of data warehouse and data lake in modern enterprise data management|Full article...]]''')<br />
Full [[laboratory automation]] is revolutionizing work habits in an increasing number of clinical [[microbiology]] facilities worldwide, generating huge streams of [[Imaging|digital images]] for interpretation. Contextually, [[deep learning]] (DL) architectures are leading to paradigm shifts in the way computers can assist with difficult visual interpretation tasks in several domains. At the crossroads of these epochal trends, we present a system able to tackle a core task in clinical microbiology, namely the global interpretation of diagnostic [[Bacteria|bacterial]] [[Cell culture|culture]] plates, including presumptive [[pathogen]] identification. This is achieved by decomposing the problem into a hierarchy of complex subtasks and addressing them with a multi-network architecture we call DeepColony ... ('''[[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Full article...]]''')<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:A critical literature review of historic scientific analog data: Uses, successes, and challenges|A critical literature review of historic scientific analog data: Uses, successes, and challenges]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Data management of microscale reaction calorimeter using a modular open-source IoT platform|Data management of microscale reaction calorimeter using a modular open-source IoT platform]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
* [[Journal:Integrative diagnostics: The time is now—a report from the International Society for Strategic Studies in Radiology|Integrative diagnostics: The time is now—a report from the International Society for Strategic Studies in Radiology]]
* [[Journal:Geochemical biodegraded oil classification using a machine learning approach|Geochemical biodegraded oil classification using a machine learning approach]]
}}
}}

Latest revision as of 15:02, 3 June 2024

Fig1 Signoroni NatComm23 14.png

"Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology"

Full laboratory automation is revolutionizing work habits in an increasing number of clinical microbiology facilities worldwide, generating huge streams of digital images for interpretation. Contextually, deep learning (DL) architectures are leading to paradigm shifts in the way computers can assist with difficult visual interpretation tasks in several domains. At the crossroads of these epochal trends, we present a system able to tackle a core task in clinical microbiology, namely the global interpretation of diagnostic bacterial culture plates, including presumptive pathogen identification. This is achieved by decomposing the problem into a hierarchy of complex subtasks and addressing them with a multi-network architecture we call DeepColony ... (Full article...)
Recently featured: