Difference between revisions of "User:Shawndouglas/sandbox/sublevel9"

From LIMSWiki
Jump to navigationJump to search
 
(146 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="nonumtoc">__TOC__</div>
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel9 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


==3. Choosing laboratory informatics software for your food and beverage lab==
==Sandbox begins below==
Source: [[LII:Laboratory Informatics Buyer's Guide for Medical Diagnostics and Research/Choosing laboratory informatics software for your lab]]


===3.1 Evaluation and selection===
[[File:|right|500px]]


'''Title''': ''LIMS Selection Guide for Materials Testing Laboratories''


====3.1.1 Technology considerations====
'''Edition''': First Edition


'''Author for citation''': Shawn E. Douglas


'''3.1.1.1 Laboratory informatics options'''
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]


'''Publication date''': ??? 2023


====3.1.2 Features and functions====
Source: [[LIMS FAQ:What are the key elements of a LIMS for food and beverage testing?]]


====3.1.3 Cybersecurity considerations====
Description goes here...


The table of contents for ''LIMS Selection Guide for Materials Testing Laboratories'' is as follows:


====3.1.4 Regulatory compliance considerations====
:[[User:Shawndouglas/sandbox/sublevel10|1. Introduction to materials and materials testing laboratories]]
::1.1 Materials testing labs, then and now
:::1.1.1 Materials testing 2.0
::1.2 Industries, products, and raw materials
::1.3 Laboratory roles and activities in the industry
:::1.3.1 R&D roles and activities
:::1.3.2 Pre-manufacturing and manufacturing roles and activities
:::1.3.3 Post-production quality control and regulatory roles and activities


:[[User:Shawndouglas/sandbox/sublevel11|2. Standards, regulations, and test methods affecting materials testing labs]]
::2.1 Globally recognized materials manufacturing standards
:::2.1.1 American Society of Civil Engineers (ASCE) materials standards
:::2.1.2 ASTM International Volume 15.04
:::2.1.3 Canadian Standards Association (CSA) A3000 series
:::2.1.4 International Organization for Standardization (ISO) 10993
:::2.1.5 Metal Powder Industries Federation (MPIF) Standard 35 family
::2.2 Regulations and laws around the world
:::2.2.1 21 CFR Part 175 and 176 - United States
:::2.2.2 Building Standard Law - Japan
:::2.2.3 The Furniture and Furnishings (Fire) (Safety) Regulations 1988 - United Kingdom
:::2.2.4 National Environment Protection (Used Packaging Materials) Measure 2011 - Australia
:::2.2.5 Surface Coating Materials Regulations (SOR/2016-193) - Canada
::2.3 Standardized test methods for materials
::2.4 Materials laboratory accreditation
:::2.4.1 A note about engineering and construction materials testing


====3.1.5 System flexibility====
:[[User:Shawndouglas/sandbox/sublevel12|3. Choosing laboratory informatics software for your materials testing lab]]
::3.1 Evaluation and selection
:::3.1.1 Technology considerations
::::3.1.1.1 Laboratory informatics options
:::3.1.2 Features and functions
::::3.1.2.1 Base features
::::3.1.2.2 Specialty features
:::3.1.3 Cybersecurity considerations
:::3.1.4 Regulatory compliance considerations
:::3.1.5 System flexibility
:::3.1.6 Cost considerations
::3.2 Implementation
:::3.2.1 Internal and external integrations
::3.3 MSW, updates, and other contracted services
::3.4 How a user requirements specification fits into the entire process (LIMSpec)


:[[User:Shawndouglas/sandbox/sublevel13|4. Resources for selecting and implementing informatics solutions]]
::4.1 LIMS vendors
::4.2 Consultants
::4.3 Professional
:::4.3.1 Trade organizations
:::4.3.2 Conferences and trade shows
::4.4 LIMSpec


====3.1.6 Cost considerations====
:[[User:Shawndouglas/sandbox/sublevel14|5. Taking the next step]]
::5.1 Conduct initial research into a specification document tailored to your lab's needs
::5.2 Issue some of the specification as part of a request for information (RFI)
::5.3 Respond to or open dialogue with vendors
:::5.3.1 The value of demonstrations
::5.4 Finalize the requirements specification and choose a vendor


:[[User:Shawndouglas/sandbox/sublevel15|6. Closing remarks]]


===3.2 Implementation===
:[[User:Shawndouglas/sandbox/sublevel16|Appendix 1. Blank LIMSpec template for manufacturing labs]]
 
::A1. Introduction and methodology
 
::A2. Primary laboratory workflow
====3.2.1 Internal and external integrations====
::A3. Maintaining laboratory workflow and operations
 
::A4. Specialty laboratory functions
 
::A5. Technology and performance improvements
===3.3 MSW, updates, and other contracted services===
::A6. Security and integrity of systems and operations
 
::A7. Putting those requirements to practical use and caveats
 
::A8. LIMSpec in Microsoft Word format
===3.4 How a user requirements specification fits into the entire process (LIMSpec)===
 
 
==References==
{{Reflist|colwidth=30em}}

Latest revision as of 23:14, 20 September 2023

Sandbox begins below

[[File:|right|500px]]

Title: LIMS Selection Guide for Materials Testing Laboratories

Edition: First Edition

Author for citation: Shawn E. Douglas

License for content: Creative Commons Attribution-ShareAlike 4.0 International

Publication date: ??? 2023


Description goes here...

The table of contents for LIMS Selection Guide for Materials Testing Laboratories is as follows:

1. Introduction to materials and materials testing laboratories
1.1 Materials testing labs, then and now
1.1.1 Materials testing 2.0
1.2 Industries, products, and raw materials
1.3 Laboratory roles and activities in the industry
1.3.1 R&D roles and activities
1.3.2 Pre-manufacturing and manufacturing roles and activities
1.3.3 Post-production quality control and regulatory roles and activities
2. Standards, regulations, and test methods affecting materials testing labs
2.1 Globally recognized materials manufacturing standards
2.1.1 American Society of Civil Engineers (ASCE) materials standards
2.1.2 ASTM International Volume 15.04
2.1.3 Canadian Standards Association (CSA) A3000 series
2.1.4 International Organization for Standardization (ISO) 10993
2.1.5 Metal Powder Industries Federation (MPIF) Standard 35 family
2.2 Regulations and laws around the world
2.2.1 21 CFR Part 175 and 176 - United States
2.2.2 Building Standard Law - Japan
2.2.3 The Furniture and Furnishings (Fire) (Safety) Regulations 1988 - United Kingdom
2.2.4 National Environment Protection (Used Packaging Materials) Measure 2011 - Australia
2.2.5 Surface Coating Materials Regulations (SOR/2016-193) - Canada
2.3 Standardized test methods for materials
2.4 Materials laboratory accreditation
2.4.1 A note about engineering and construction materials testing
3. Choosing laboratory informatics software for your materials testing lab
3.1 Evaluation and selection
3.1.1 Technology considerations
3.1.1.1 Laboratory informatics options
3.1.2 Features and functions
3.1.2.1 Base features
3.1.2.2 Specialty features
3.1.3 Cybersecurity considerations
3.1.4 Regulatory compliance considerations
3.1.5 System flexibility
3.1.6 Cost considerations
3.2 Implementation
3.2.1 Internal and external integrations
3.3 MSW, updates, and other contracted services
3.4 How a user requirements specification fits into the entire process (LIMSpec)
4. Resources for selecting and implementing informatics solutions
4.1 LIMS vendors
4.2 Consultants
4.3 Professional
4.3.1 Trade organizations
4.3.2 Conferences and trade shows
4.4 LIMSpec
5. Taking the next step
5.1 Conduct initial research into a specification document tailored to your lab's needs
5.2 Issue some of the specification as part of a request for information (RFI)
5.3 Respond to or open dialogue with vendors
5.3.1 The value of demonstrations
5.4 Finalize the requirements specification and choose a vendor
6. Closing remarks
Appendix 1. Blank LIMSpec template for manufacturing labs
A1. Introduction and methodology
A2. Primary laboratory workflow
A3. Maintaining laboratory workflow and operations
A4. Specialty laboratory functions
A5. Technology and performance improvements
A6. Security and integrity of systems and operations
A7. Putting those requirements to practical use and caveats
A8. LIMSpec in Microsoft Word format