Difference between revisions of "User:Shawndouglas/sandbox/sublevel4"

From LIMSWiki
Jump to navigationJump to search
Tag: Reverted
 
(171 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Title''': ''HIPAA Compliance: An Introduction''
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel4 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


'''Author for citation''': Alan Vaughan, with editorial modifications by Shawn Douglas
==Sandbox begins below==


'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
*Discussion and practical use of [[artificial intelligence]] (AI) in the [[laboratory]] is, perhaps to the surprise of some, not a recent phenomena. In the mid-1980s, researchers were developing computerized AI systems able "to develop automatic decision rules for follow-up analysis of &#91;[[clinical laboratory]]&#93; tests depending on prior information, thus avoiding the delays of traditional sequential testing and the costs of unnecessary parallel testing."<ref>{{Cite journal |last=Berger-Hershkowitz |first=H. |last2=Neuhauser |first2=D. |date=1987 |title=Artificial intelligence in the clinical laboratory |url=https://www.ccjm.org/content/54/3/165 |journal=Cleveland Clinic Journal of Medicine |volume=54 |issue=3 |pages=165–166 |doi=10.3949/ccjm.54.3.165 |issn=0891-1150 |pmid=3301059}}</ref> In fact, discussion of AI in general was ongoing even in the mid-1950s.<ref name="MinskyHeuristic56">{{cite book |url=https://books.google.com/books?hl=en&lr=&id=fvWNo6_IZGUC&oi=fnd&pg=PA1 |title=Heuristic Aspects of the Artificial Intelligence Problem |author=Minsky, M. |publisher=Ed Services Technical Information Agency |date=17 December 1956 |accessdate=16 February 2023}}</ref><ref>{{Cite journal |last=Minsky |first=Marvin |date=1961-01 |title=Steps toward Artificial Intelligence |url=http://ieeexplore.ieee.org/document/4066245/ |journal=Proceedings of the IRE |volume=49 |issue=1 |pages=8–30 |doi=10.1109/JRPROC.1961.287775 |issn=0096-8390}}</ref>


'''Publication date''': Originally published June 2016; lightly edited February 2022
*Hiring demand for laboratorians with AI experience (2015–18) has historically been higher in non-healthcare industries, such as manufacturing, mining, and agriculture, shedding a light on how AI adoption in the clinical setting may be lacking. According to the Brookings Institute, "Even for the relatively-skilled job postings in hospitals, which includes doctors, nurses, medical technicians, research lab workers, and managers, only approximately 1 in 1,250 job postings required AI skills." They add: "AI adoption may be slow because it is not yet useful, or because it may not end up being as useful as we hope. While our view is that AI has great potential in health care, it is still an open question."<ref name=":11">{{Cite web |last=Goldfarb, A.; Teodoridis, F. |date=09 March 2022 |title=Why is AI adoption in health care lagging? |work=Series: The Economics and Regulation of Artificial Intelligence and Emerging Technologies |url=https://www.brookings.edu/research/why-is-ai-adoption-in-health-care-lagging/ |publisher=Brookings Institute |accessdate=17 February 2023}}</ref>


*Today, AI is being practically used in not only clinical diagnostic laboratories but also clinical research labs, life science labs, and research and development (R&D) labs, and more. Practical uses of AI can be found in:


==Introduction==
:clinical research labs<ref name=":0">{{Cite journal |last=Damiani |first=A. |last2=Masciocchi |first2=C. |last3=Lenkowicz |first3=J. |last4=Capocchiano |first4=N. D. |last5=Boldrini |first5=L. |last6=Tagliaferri |first6=L. |last7=Cesario |first7=A. |last8=Sergi |first8=P. |last9=Marchetti |first9=A. |last10=Luraschi |first10=A. |last11=Patarnello |first11=S. |date=2021-12-07 |title=Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator |url=https://www.frontiersin.org/articles/10.3389/fcomp.2021.768266/full |journal=Frontiers in Computer Science |volume=3 |pages=768266 |doi=10.3389/fcomp.2021.768266 |issn=2624-9898}}</ref>
===Reason and scope===
:hospitals<ref name=":0" /><ref name=":1">{{Cite journal |last=University of California, San Francisco |last2=Adler-Milstein |first2=Julia |last3=Aggarwal |first3=Nakul |last4=University of Wisconsin-Madison |last5=Ahmed |first5=Mahnoor |last6=National Academy of Medicine |last7=Castner |first7=Jessica |last8=Castner Incorporated |last9=Evans |first9=Barbara J. |last10=University of Florida |last11=Gonzalez |first11=Andrew A. |date=2022-09-29 |title=Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis |url=https://nam.edu/meeting-the-moment-addressing-barriers-and-facilitating-clinical-adoption-of-artificial-intelligence-in-medical-diagnosis |journal=NAM Perspectives |volume=22 |issue=9 |doi=10.31478/202209c |pmc=PMC9875857 |pmid=36713769}}</ref>
[[File:Leiden University Library, Group Study Room.jpg|right|360px]]In the U.S. healthcare industry, there are two main regulatory laws: the [[Clinical Laboratory Improvement Amendments|Clinical Laboratory Improvement Amendments of 1988]] (CLIA) and the [[Health Insurance Portability and Accountability Act|Health Information Portability and Accountability Act of 1996]] (HIPAA). The first is aimed at [[Clinical laboratory|clinical laboratories]] and the second applies to the vast majority of healthcare settings. This training guide is aimed at providing some accurate and useful training to those required to comply with HIPAA. Indeed, HIPAA training is mandated in the law itself, particularly by the [[United States Department of Health and Human Services]] (HHS), which summarizes that responsibility as such:
:medical diagnostics labs<ref name=":1" /><ref name=":12">{{Cite web |last=Government Accountability Office (GAO); National Academy of Medicine (NAM) |date=September 2022 |title=Artificial Intelligence in Health Care: Benefits and Challenges of Machine Learning Technologies for Medical Diagnostics |url=https://www.gao.gov/assets/gao-22-104629.pdf |format=PDF |publisher=Government Accountability Office |accessdate=16 February 2023}}</ref><ref name=":13">{{Cite journal |last=Wen |first=Xiaoxia |last2=Leng |first2=Ping |last3=Wang |first3=Jiasi |last4=Yang |first4=Guishu |last5=Zu |first5=Ruiling |last6=Jia |first6=Xiaojiong |last7=Zhang |first7=Kaijiong |last8=Mengesha |first8=Birga Anteneh |last9=Huang |first9=Jian |last10=Wang |first10=Dongsheng |last11=Luo |first11=Huaichao |date=2022-09-24 |title=Clinlabomics: leveraging clinical laboratory data by data mining strategies |url=https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04926-1 |journal=BMC Bioinformatics |language=en |volume=23 |issue=1 |pages=387 |doi=10.1186/s12859-022-04926-1 |issn=1471-2105 |pmc=PMC9509545 |pmid=36153474}}</ref><ref name=":7">{{Cite journal |last=DeYoung |first=B. |last2=Morales |first2=M. |last3=Giglio |first3=S. |date=2022-08-04 |title=Microbiology 2.0–A “behind the scenes” consideration for artificial intelligence applications for interpretive culture plate reading in routine diagnostic laboratories |url=https://www.frontiersin.org/articles/10.3389/fmicb.2022.976068/full |journal=Frontiers in Microbiology |volume=13 |pages=976068 |doi=10.3389/fmicb.2022.976068 |issn=1664-302X |pmc=PMC9386241 |pmid=35992715}}</ref><ref name=":5">{{Cite web |last=Schut, M. |date=01 December 2022 |title=Get better with bytes |url=https://www.amsterdamumc.org/en/research/news/get-better-with-bytes.htm |publisher=Amsterdam UMC |accessdate=16 February 2023}}</ref><ref name="AlbanoCal19">{{cite web |url=https://physicianslab.com/calculations-to-diagnosis-the-artificial-intelligence-shift-thats-already-happening/ |title=Calculations to Diagnosis: The Artificial Intelligence Shift That’s Already Happening |author=Albano, V.; Morris, C.; Kent, T. |work=Physicians Lab |date=06 December 2019 |accessdate=16 February 2023}}</ref>
:chromatography labs<ref name="AlbanoCal19" />
:biology and life science labs<ref name=":6">{{Cite journal |last=de Ridder |first=Dick |date=2019-01 |title=Artificial intelligence in the lab: ask not what your computer can do for you |url=https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13317 |journal=Microbial Biotechnology |language=en |volume=12 |issue=1 |pages=38–40 |doi=10.1111/1751-7915.13317 |pmc=PMC6302702 |pmid=30246499}}</ref>
:medical imaging centers<ref name="Brandao-de-ResendeAIWeb22">{{cite web |url=https://siim.org/page/22w_clinical_adoption_of_ai |title=AI Webinar: Clinical Adoption of AI Across Image Producing Specialties |author=Brandao-de-Resende, C.; Bui, M.; Daneshjou, R. et al. |publisher=Society for Imaging Informatics in Medicine |date=11 October 2022}}</ref>
:ophthalmology clinics<ref>{{Cite journal |last=He |first=Mingguang |last2=Li |first2=Zhixi |last3=Liu |first3=Chi |last4=Shi |first4=Danli |last5=Tan |first5=Zachary |date=2020-07 |title=Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge |url=https://journals.lww.com/10.1097/APO.0000000000000301 |journal=Asia-Pacific Journal of Ophthalmology |language=en |volume=9 |issue=4 |pages=299–307 |doi=10.1097/APO.0000000000000301 |issn=2162-0989}}</ref>
:reproduction clinics<ref name=":9">{{Cite journal |last=Trolice |first=Mark P. |last2=Curchoe |first2=Carol |last3=Quaas |first3=Alexander M |date=2021-07 |title=Artificial intelligence—the future is now |url=https://link.springer.com/10.1007/s10815-021-02272-4 |journal=Journal of Assisted Reproduction and Genetics |language=en |volume=38 |issue=7 |pages=1607–1612 |doi=10.1007/s10815-021-02272-4 |issn=1058-0468 |pmc=PMC8260235 |pmid=34231110}}</ref><ref name="ESHREArti22">{{cite web |url=https://www.focusonreproduction.eu/article/ESHRE-News-22AI |title=Annual Meeting 2022: Artificial intelligence in embryology and ART |author=European Society of Human Reproduction and Embryology |work=Focus on Reproduction |date=06 July 2022 |accessdate=16 February 2023}}</ref><ref name="HinckleyApply21">{{cite web |url=https://rscbayarea.com/blog/applying-ai-for-better-ivf-success |title=Applying AI (Artificial Intelligence) in the Lab for Better IVF Success |author=Hinckley, M. |work=Reproductive Science Center Blog |publisher=Reproductive Science Center of the Bay Area |date=17 March 2021 |accessdate=16 February 2023}}</ref>
:digital pathology labs<ref name="YousifArt21">{{cite web |url=https://clinlabint.com/artificial-intelligence-is-the-key-driver-for-digital-pathology-adoption/ |title=Artificial intelligence is the key driver for digital pathology adoption |author=Yousif, M.; McClintock, D.S.; Yao, K. |work=Clinical Laboratory Int |publisher=PanGlobal Media |date=2021 |accessdate=16 February 2023}}</ref>
:material testing labs<ref name=":2">{{Cite journal |last=MacLeod |first=B. P. |last2=Parlane |first2=F. G. L. |last3=Morrissey |first3=T. D. |last4=Häse |first4=F. |last5=Roch |first5=L. M. |last6=Dettelbach |first6=K. E. |last7=Moreira |first7=R. |last8=Yunker |first8=L. P. E. |last9=Rooney |first9=M. B. |last10=Deeth |first10=J. R. |last11=Lai |first11=V. |date=2020-05-15 |title=Self-driving laboratory for accelerated discovery of thin-film materials |url=https://www.science.org/doi/10.1126/sciadv.aaz8867 |journal=Science Advances |language=en |volume=6 |issue=20 |pages=eaaz8867 |doi=10.1126/sciadv.aaz8867 |issn=2375-2548 |pmc=PMC7220369 |pmid=32426501}}</ref><ref name=":3">{{Cite journal |last=Chibani |first=Siwar |last2=Coudert |first2=François-Xavier |date=2020-08-01 |title=Machine learning approaches for the prediction of materials properties |url=http://aip.scitation.org/doi/10.1063/5.0018384 |journal=APL Materials |language=en |volume=8 |issue=8 |pages=080701 |doi=10.1063/5.0018384 |issn=2166-532X}}</ref><ref name="MullinTheLab21">{{Cite journal |last=Mullin, R. |date=28 March 2021 |title=The lab of the future is now |url=http://cen.acs.org/business/informatics/lab-future-ai-automated-synthesis/99/i11 |journal=Chemical & Engineering News |volume=99 |issue=11 |archiveurl=https://web.archive.org/web/20220506192926/http://cen.acs.org/business/informatics/lab-future-ai-automated-synthesis/99/i11 |archivedate=06 May 2022 |accessdate=16 February 2023}}</ref>
:chemical experimentation and molecular discovery labs<ref name="MullinTheLab21" /><ref name=":4">{{Cite journal |last=Burger |first=Benjamin |last2=Maffettone |first2=Phillip M. |last3=Gusev |first3=Vladimir V. |last4=Aitchison |first4=Catherine M. |last5=Bai |first5=Yang |last6=Wang |first6=Xiaoyan |last7=Li |first7=Xiaobo |last8=Alston |first8=Ben M. |last9=Li |first9=Buyi |last10=Clowes |first10=Rob |last11=Rankin |first11=Nicola |date=2020-07-09 |title=A mobile robotic chemist |url=https://www.nature.com/articles/s41586-020-2442-2.epdf?sharing_token=HOkIS6P5VIAo2_l3nRELmdRgN0jAjWel9jnR3ZoTv0Nw4yZPDO1jBpP52iNWHbb8TakOkK906_UHcWPTvNxCmzSMpAYlNAZfh29cFr7WwODI2U6eWv38Yq2K8odHCi-qwHcEDP18OjAmH-0KgsVgL5CpoEaQTCvbmhXDSyoGs6tIMe1nuABTeP58z6Ck3uULcdCtVQ66X244FsI7uH8GnA%3D%3D&tracking_referrer=cen.acs.org |journal=Nature |language=en |volume=583 |issue=7815 |pages=237–241 |doi=10.1038/s41586-020-2442-2 |issn=0028-0836}}</ref><ref name="LemonickExplore20">{{Cite journal |last=Lemonick, S. |date=06 April 2020 |title=Exploring chemical space: Can AI take us where no human has gone before? |url=https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13 |journal=Chemical & Engineering News |volume=98 |issue=13 |archiveurl=https://web.archive.org/web/20200729004137/https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13 |archivedate=29 July 2020 |accessdate=16 February 2023}}</ref>
:quantum physics labs<ref name="DoctrowArti19">{{cite web |url=https://www.pnas.org/post/podcast/artificial-intelligence-laboratory |title=Artificial intelligence in the laboratory |author=Doctrow, B. |work=PNAS Science Sessions |date=16 December 2019 |accessdate=16 February 2023}}</ref>


<blockquote>Workforce members include employees, volunteers, trainees, and may also include other persons whose conduct is under the direct control of the [covered] entity (whether or not they are paid by the entity). A covered entity must train all workforce members on its privacy policies and procedures, as necessary and appropriate for them to carry out their functions. A covered entity must have and apply appropriate sanctions against workforce members who violate its privacy policies and procedures or the Privacy Rule.<ref name="HHSSummaryHIPAA">{{cite web |url=https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html |title=Summary of the HIPAA Privacy Rule |author=Office for Civil Rights |publisher=United States Department of Health and Human Services |date=26 July 2013 |accessdate=09 February 2022}}</ref></blockquote>
*What's going on in these labs?


Anyone involved in healthcare has probably already realized that while their own entity's policies and procedures may well be in compliance, there is still a great deal of misunderstanding out there regarding HIPAA, as well as a general lack of knowledge of it beyond those measures that are in place where they happen to work. And it is also a matter of concern that industry professionals have encountered an alarming number of courses and guides purporting to provide an acceptable level of training, yet they prove to be significantly lacking in scope, clarity and in some cases accuracy.
:'''Materials science''': The creation of "a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions ..."<ref name=":2" />
:'''Materials science''': "Most of the applications of [machine learning (ML)] in chemical and materials sciences, as we have said, feature supervised learning algorithms. The goal there is to supplement or replace traditional modeling methods, at the quantum chemical or classical level, in order to predict the properties of molecules or materials directly from their structure or their chemical composition ... Our research group was applying the same idea on a narrower range of materials, trying to confirm that for a given chemical composition, geometrical descriptors of a material’s structure could lead to accurate predictions of its mechanical features."<ref name=":3" />
:'''Life science''': "In biological experiments, we generally cannot as easily declare victory, but we can use the systems biology approach of cycling between experimentation and modelling to see which sequences, when tested, are most likely to improve the model. In artificial intelligence, this is called active learning, and it has some similarity to the way in which we as humans learn as infants: we get some help from parents and teachers, but mainly model the world around us by exploring it and interacting with it. Ideally then, we would recreate such an environment for our machine learning algorithms in the laboratory, where we start with an initial ‘infant’ model of a certain regulatory system or protein function and let the computer decide what sequence designs to try out – a deep learning version of the ‘robot scientist’. Microbes are ideal organisms for such an approach, given the ease and speed with which they can be grown and genetically manipulated. Combined with laboratory automation, many microbial experiments can (soon) be performed with minimal human intervention, ranging from strain construction and screening, such as operated by Amyris, Gingko, Transcriptic, etc., to full-genome engineering or even the design of microbial ecologies."<ref name=":6" />
:'''Digital pathology''': "The collaboration combines two AI solutions, VistaPath’s Sentinel, the world’s first automated tissue grossing platform, and Gestalt’s AI Requisition Engine (AIRE), a leading-edge AI algorithm for accessioning, to raise the bar in AI-driven pathology digitization. Designed to make tissue grossing faster and more accurate, VistaPath’s Sentinel uses a high-quality video system to assess specimens and create a gross report 93% faster than human technicians with 43% more accuracy. It not only improves on quality by continuously monitoring the cassette, container, and tissue to reduce mislabeling and specimen mix-up, but also increases traceability by retaining original images for downstream review."<ref>{{Cite web |last=VistaPath |date=28 July 2022 |title=VistaPath Launches New Collaboration with Gestalt Diagnostics to Further Accelerate Pathology Digitization |work=PR Newswire |url=https://www.prnewswire.com/news-releases/vistapath-launches-new-collaboration-with-gestalt-diagnostics-to-further-accelerate-pathology-digitization-301594718.html |publisher=Cision US Inc |accessdate=17 February 2023}}</ref>
:'''Chemistry and molecular science''': "The benefits of combining automated experimentation with a layer of artificial intelligence (AI) have been demonstrated for flow reactors, photovoltaic films, organic synthesis, perovskites and in formulation problems. However, so far no approaches have integrated mobile robotics with AI for chemical experiments. Here, we built Bayesian optimization into a mobile robotic workflow to conduct photocatalysis experiments within a ten-dimensional space."<ref name=":4" />
:'''Chemistry and immunology''': "Chemistry and immunology laboratories are particularly well-suited to leverage machine learning because they generate large, highly structured data sets, Schulz and others wrote in a separate review paper. Labor-intensive processes used for interpretation and quality control of electrophoresis traces and mass spectra could benefit from automation as the technology improves, they said. Clinical chemistry laboratories also generate digital images—such as urine sediment analysis—that may be highly conducive to semiautomated analyses, given advances in computer vision, the paper noted."<ref name=":8">{{Cite web |last=Blum, K. |date=01 January 2023 |title=A Status Report on AI in Laboratory Medicine |work=Clinical Laboratory News |url=https://www.aacc.org/cln/articles/2023/janfeb/a-status-report-on-ai-in-laboratory-medicine |publisher=American Association for Clinical Chemistry |accessdate=17 February 2023}}</ref>
:'''Clinical research''': "... retrospective analysis of existing patient data for descriptive and clustering purposes [and] automation of knowledge extraction, ranging from text mining, patient selection for trials, to generation of new research hypotheses ..."<ref name=":0" />
:'''Clinical research''': "AI ... offers a further layer to the laboratory system by analyzing all experimental data collected by experiment devices, whether it be a sensor or a collaborative robot. From data collected, AI is able to produce hypotheses and predict which combination of materials or temperature is desired for the experiment. In short, this system will allow scientists to be aided by a highly intelligent system which is constantly monitoring and analyzing the experimental output. In this way, AI will help an experiment from its inception to conclusion."<ref>{{Cite web |last=Chubb, P. |date=03 November 2020 |title=How disruptive technology is helping laboratories combat COVID-19 |url=https://datafloq.com/read/disruptive-technologies-lab-help-us-prepare-future-pandemics/ |publisher=Datafloq |accessdate=16 February 2023}}</ref>
:'''Clinical research/medical diagnostics''': "Artificial intelligence (AI) in the laboratory is primarily used to make sense of big data, the almost impossibly large sets of data that biologists and pharmaceutical R&D teams are accustomed to working with. AI algorithms can parse large amounts of data in a short amount of time and turn that data into visualizations that viewers can easily understand. In certain data-intensive fields, such as genomic testing and virus research, AI algorithms are the best way to sort through the data and do some of the pattern recognition work."<ref>{{Cite web |last=Stewart, B. |date=18 March 2021 |title=Using LIMS for Data Visualization |work=CSols Insights |url=https://www.csolsinc.com/insights/published-articles/using-lims-for-data-visualization/ |publisher=CSols, Inc |accessdate=17 February 2023}}</ref>
:'''Medical diagnostics''': Development and implementation of [[Clinical decision support system|clinical decision support systems]] <ref name=":0" /><ref name=":1" />
:'''Medical diagnostics''': "Finally, in the laboratory, AI reduces the number of unnecessary blood samples when diagnosing infection. Instead of the 'gold standard blood sample' that takes 24-72 hours, the algorithm can predict the outcome of the blood sample with almost 80% accuracy based on demographics, vital signs, medications, and laboratory and radiology results. These are all examples of how Artificial Intelligence can be used to test better and faster with information that already exists. This saves time and costs."<ref name=":5" />
:'''Medical diagnostics''': "Chang sees two overarching classes of AI models: those that tackle internal challenges in the lab, such as how to deliver more accurate results to clinicians; and those that seek to identify cohorts of patients and care processes to close quality gaps in health delivery systems. The lab, however, 'isn’t truly an island,' said Michelle Stoffel, MD, PhD, associate chief medical information officer for laboratory medicine and pathology at M Health Fairview and the University of Minnesota in Minneapolis. 'When other healthcare professionals are working with electronic health records or other applications, there could be AI-driven tools, or algorithms used by an institution’s systems that may draw on laboratory data.'"<ref name=":8" />
:'''Medical diagnostics''': AI is used for the formulation of reference ranges, improvement of quality control, and automated interpretation of results. "Continuous monitoring of specimen acceptability, collection and transport can result in the prompt identification and correction of problems, leading to improved patient care and a reduction in unnecessary redraws and delays in reporting results."<ref name=":13" />
:'''Reproduction science''': "The field of AI is the marriage of humans and computers while reproductive medicine combines clinical medicine and the scientific laboratory of embryology. The application of AI has the potential to disconnect healthcare professionals from patients through algorithms, automated communication, and clinical imaging. However, in the embryology laboratory, AI, with its focus on gametes and embryos, can avoid the same risk of distancing from the patient. Areas of application of AI in the laboratory would be to enhance and automate embryo ranking through analysis of images, the ultimate goal being to predict successful implantation. Might such a trend obviate the need for embryo morphological assessment, time-lapse imaging and preimplantation genetic testing for aneuploidy (PGT-A), including mosaicism. Additionally, AI could assist with automation through analysis of testicular sperm samples searching for viable gametes, embryo grading uniformity."<ref name=":9" />
:'''Chromatography-heavy sciences''': " A great example of this is AI in the Liquid Chromatography Mass Spectrometry (LC-MS) field. LC-MS is a great tool used to measure various compounds in the human body, including everything from hormone levels to trace metals. One of the ways AI has already integrated with LC-MS is how it cuts down on the rate limiting steps of LC-MS, which more often than not are sample prep and LC separations. One system that Physicians Lab has made use of is parallel processing using SCIEX MPX 2.0 High Throughput System. This system can couple parallel runs with one LCMS instrument, resulting in twice the speed with no loss to accuracy. It can do this by staggering two runs either using the same method, or different methods entirely. What really makes this system great is its ability to automatically detect carryover and inject solvent blanks to clean the instrument. The system will then continue its analyzing, while automatically reinjecting samples that may be affected by the carryover. It will also flag high concentration without user input, allowing for easy detection of possibly faulty samples. This allows it to operate without users from startup to shut down. Some of the other ways that it can be used to increase efficiency are by using integrated network features to work on anything from streamlining management to increased throughput."<ref name="AlbanoCal19" />
:'''Most any lab''': "Predictive analytics, for example, is one tool that the Pistoia Alliance is using to better understand laboratory instruments and how they might fail over time... With the right data management strategies and careful consideration of metadata, how to best store data so that it can be used in future AI and ML workflows is essential to the pursuit of AI in the laboratory. Utilizing technologies such as LIMS and ELN enables lab users to catalogue data, providing context and instrument parameters that can then be fed into AI or ML systems. Without the correct data or with mismatched data types, AI and ML will not be possible, or at the very least, could provide undue bias trying to compare data from disparate sources."<ref>{{Cite web |date=29 January 2021 |title=Data Analytics |work=Scientific Computing World - Building a Smart Laboratory 2020 |url=https://www.scientific-computing.com/feature/data-analytics-0 |publisher=Europa Science Ltd |accessdate=17 February 2023}}</ref>
:'''Most any lab''': "When the actionable items are automatically created by Optima, the 'engine' starts working. An extremely sophisticated algorithm is able to assign the tasks to the resources, both laboratory personnel and instruments, according to the system configuration. Optima, thanks to a large amount of time dedicated to research the best way to automate this critical process, is able to automate most of the lab resource scheduling."<ref>{{Cite web |last=Optima Team |date=15 December 2020 |title=The concept of machine learning applied to lab resources scheduling |work=Optima Blog |url=https://www.optima.life/blog/the-concept-of-machine-learning-applied-to-lab-resources-scheduling/ |publisher=Optima PLC Tracking Tools S.L |accessdate=17 February 2023}}</ref>


This training guide is designed to provide a substantive, reasonably comprehensive understanding of all of the aspects of HIPAA that have bearing on most healthcare industry professionals. It is based almost completely on first-hand materials from the HHS (which the law charges with administration of HIPAA) and the actual Health Information and Portability Act of 1996 (HIPAA) law itself, rather than relying on secondary and tertiary interpretations and paraphrasing. However, these resources do not and cannot provide every detail for all scenarios. As such, several third-party sources were taken into account to gather and present the fullest comprehension of the materials and their relevance for the covered entities HIPAA affects.
*A number of challenges exist in the realm of effectively and securely implementing AI in the laboratory. This includes:


===Goals of this guide===
:Ethical and privacy challenges<ref name=":0" /><ref name=":8" /><ref name=":10" />
The primary aim of this training guide is to supplement the requirement for HIPAA training as described above. Whether used to fulfill that directive, or as source for your own research, it is designed to provide the most comprehensive, clear and accurate general familiarity with HIPAA possible as it relates to those attempting to be compliant.
:Algorithmic limitations<ref name=":11" />
:Data access limitations, including "where to get it, how to share it, and how to know when you have enough to train a machine-learning system that will produce good results"<ref name=":11" /><ref name=":8" /><ref name=":14">{{Cite web |last=Sherwood, L. |date=10 February 2022 |title=SLAS 2022: Barriers remain to AI adoption in life sciences |work=LabPulse.com Showcasts |url=https://www.labpulse.com/showcasts/slas/2022/article/15300130/slas-2022-barriers-remain-to-ai-adoption-in-life-sciences |publisher=Science and Medicine Group |accessdate=17 February 2023}}</ref><ref name=":15">{{Cite journal |last=Bellini |first=Claudia |last2=Padoan |first2=Andrea |last3=Carobene |first3=Anna |last4=Guerranti |first4=Roberto |date=2022-11-25 |title=A survey on Artificial Intelligence and Big Data utilisation in Italian clinical laboratories |url=https://www.degruyter.com/document/doi/10.1515/cclm-2022-0680/html |journal=Clinical Chemistry and Laboratory Medicine (CCLM) |language=en |volume=60 |issue=12 |pages=2017–2026 |doi=10.1515/cclm-2022-0680 |issn=1434-6621}}</ref>
:Data integration and transformation issues<ref name=":0" /><ref name=":15" />
:Regulatory barriers<ref name=":11" /><ref name=":12" />
:Misaligned incentives<ref name=":11" />
:Lack of knowledgeable/skilled talent<ref name=":0" /><ref name=":8" /><ref name=":14" /><ref name=":15" />
:Cost of skilled talent and infrastructure for maintaining and updating AI systems<ref name=":8" />
:Legacy systems running outdated technologies<ref name=":14" />
:Lack of IT systems or specialized software systems<ref name=":15" />
:Lack of standardized, best practices-based methods of validating algorithms<ref name=":8" />
:Failure to demonstrate real-world performance<ref name=":12" />
:Failure to meet the needs of the professionals using it<ref name=":12" />


*Given those challenges, some considerations should be made about implementing AI-based components in the laboratory. Examples include:


==What is HIPAA?==
:'''Clinical diagnostics''': "From an industry and regulatory perspective, however, only the intended uses supported from the media manufacturer can be supported from AI applications, unless otherwise justified and substantive evidence is presented for additional claims support. This means strict adherence to specimen type and incubation conditions. Considering that the media was initially developed for human assessment using the well-trained microbiologist eye, and not an advanced imaging system with or without AI, this paradigm should shift to allow advancements in technology to challenge the status-quo of decreasing media read-times especially, as decreased read-times assist with laboratory turnaround times and thus patient management. Perhaps with an increasing body of evidence to support any proposed indications for use, either regulatory positions should be challenged, or manufacturers of media and industry AI-development specialists should work together to advance the field with new indications for use.
[[File:HIPAA Screenshot.png|left|400px]]The healthcare industry must comply with both CLIA and HIPAA. CLIA regulatory standards apply to all clinical laboratory testing performed on humans in the United States, except clinical trials and basic research.<ref name="42.5.495">{{cite web |url=https://www.ecfr.gov/current/title-42/chapter-IV/subchapter-G/part-493 |title=Code of Federal Regulations Title 42, Chapter IV, Subchapter G, Part 493 |publisher=U.S. Government Publishing Office |accessdate=09 February 2022}}</ref> While important, this guide focuses on HIPAA, which was enacted by the United States Congress and signed into law in 1996.<ref name="104-191">{{cite web |url=https://www.govinfo.gov/app/details/PLAW-104publ191 |title=Public Law 104 - 191 - Health Insurance Portability And Accountability Act of 1996 |work=GovInfo |publisher=U.S. Government Publishing Office |date=21 August 1996 |accessdate=09 February 2022}}</ref>
:While the use of AI in the laboratory setting can be highly beneficial there are still some issues to be addressed. The first being phenotypically distinct single organism polymorphisms that may be interpreted by AI as separate organisms, as may also be the case for a human assessment, as well as small colony variant categorization. As detailed earlier, the broader the inputs, the greater the generalization of the model, and the higher the likelihood of algorithm accuracy. In that respect, understanding and planning around these design constraints is critical for ultimate deployment of algorithms. Additionally, expecting an AI system to correctly categorize “contamination” is a difficult task as often this again seemingly innocuous decision is dependent on years of experience and understanding the specimen type and the full clinical picture with detailed clinical histories. In this respect, a fully integrated AI-LIS system where all data is available may assist, but it is currently not possible to gather this granular detail needed to make this assessment reliable."<ref name=":7" />
 
:'''Clinical diagnostics and pathology''': "Well, if I’ve learned anything in my research into this topic, it’s that AI implementation needs to be a two-way street. First, any company who is active in this space must reach out to pathologists and laboratory medicine professionals to understand their daily workflows, needs, and pain points in as much detail as possible. Second, pathologists, laboratory medicine professionals, and educators must all play their important part – willingly offering their time and expertise when it is sought or proactively getting involved. And finally, it’s clear that there is an imbalanced focus on certain issues – with privacy, respect, and sustainability falling by the wayside."<ref name=":10">{{Cite web |last=Lee, G.F. |date=10 October 2022 |title=The Robot May See You Now: It’s time to stop and think about the ethics of artificial intelligence |work=The Pathologist |url=https://thepathologist.com/outside-the-lab/the-robot-may-see-you-now |accessdate=17 February 2023}}</ref>
Whereas CLIA involves standards in clinical testing, HIPAA is concerned with rigorously and effectively protecting patients’ personal information. It applies to most any entity that handles a patient's personal information, including contractors and other business associates.
:'''Healthcare''': "While we are encouraged by the promise shown by AI in healthcare, and more broadly welcome the use of digital technologies in improving clinical outcomes and health system productivity, we also recognize that caution must be exercised when introducing any new healthcare technology. Working with colleagues across the NHS Transformation Directorate, as well as the wider AI community, we have been developing a framework to evaluate AI-enabled solutions in the health and care policy context. The aim of the framework is several-fold but is, at its core, a tool with which to highlight to healthcare commissioners, end users, patients and members of the public the considerations to be mindful when introducing AI to healthcare settings."<ref>{{Cite journal |last=Chada |first=Bharadwaj V |last2=Summers |first2=Leanne |date=2022-10-10 |title=AI in the NHS: a framework for adoption |url=https://www.rcpjournals.org/lookup/doi/10.7861/fhj.2022-0068 |journal=Future Healthcare Journal |language=en |pages=fhj.2022–0068 |doi=10.7861/fhj.2022-0068 |issn=2514-6645 |pmc=PMC9761451 |pmid=36561823}}</ref>
 
:'''Most any lab''': A code of AI ethics should address objectivity, privacy, transparency, accountability, and sustainability in any AI implementation.<ref name=":10" />
===Privacy and security===
:'''Most any lab''': "Another approach is to implement an AI program alongside a manual process, assessing its performance along the way, as a means to ease into using the program. 'I think one of the most impactful things that laboratorians can do today is to help make sure that the lab data that they’re generating is as robust as possible, because these AI tools rely on new training sets, and their performance is really only going to be as good as the training data sets they’re given,' Stoffel said."<ref name=":8" />
There are two main areas of HIPAA regulations and standards: privacy and security. Both apply to all covered entities and are related, but have slightly different emphases.
{{flowlist |
* HIPAA privacy (the Privacy Rule): This concentrates on the patient's right to privacy regarding their personal information and health records, and what covered entities must do to support that. It also includes their right to access those data.
 
* HIPAA security (the Security Rule): This portion of HIPAA focuses on the requirements for covered entities to protect patient data, including administrative, physical and technical ways and means.}}
 
===Government oversight===
When laws are made, the responsibility to make affected parties aware of their obligations and how to meet them—and to monitor, enforce and punish offenders—is often allocated to a particular body. In the case of HIPAA, the HHS is that body. Within the HHS, the Office for Civil Rights (OCR) ensures equal access to certain health and human services and protects the privacy and security of health information. Additionally, the [[Centers for Disease Control and Prevention]] (CDC) and other HHS agencies provide additional guidance and materials.
 
Further information about HIPAA and its history, etc. can be found on the LIMSwiki [[Health Insurance Portability and Accountability Act]] page.
 
 
==Who needs to comply?==
HIPAA compliance is highly important in the healthcare arena. Non-compliance can result in fines and other serious consequences. But who is actually bound by this law? HIPAA is comprised of two main segments: the Privacy Rule and the Security Rule. Those who must comply are called "covered entities." According to the HHS, these include:
 
: ▪ health plans;
: ▪ healthcare clearinghouses; and
: ▪ any healthcare provider who transmits health information in electronic form in connection with a transaction for which the Secretary of HHS has adopted standards under HIPAA.
 
Covered entities include doctors, clinics, [[hospital]]s, dentists, nursing homes and pharmacies that transmit data electronically, as well as health plans, insurance plans and healthcare clearinghouses.<ref name="HHSSummaryHIPAA" />
 
===Healthcare providers===
Every healthcare provider (regardless of size) who electronically transmits health [[information]] in connection with certain transactions is a covered entity. These transactions include<ref name="HHSSummaryHIPAA" />:
 
* claims
* benefit eligibility inquiries
* referral authorization requests
* other transactions for which HHS has established standards under the HIPAA Transactions Rule
 
It's important to note that using electronic technology (e.g., email) does not mean a healthcare provider is a covered entity. The transmission must be in connection with a "standard transaction."
 
Transactions are electronic exchanges involving the transfer of information between two parties for specific purposes. For example, a healthcare provider will send a claim to a health plan to request payment for medical services.<ref name="StandardTrans">{{cite web |url=https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/HIPAA-ACA/AdoptedStandardsandOperatingRules |title=Adopted Standards and Operating Rules |publisher=U.S. Centers for Medicare and Medicaid Services |date=01 December 2021 |accessdate=09 February 2022}}</ref>
 
In the HIPAA regulations, the Secretary of Health and Human Services adopted certain standard transactions for [[electronic data interchange]] (EDI) of healthcare data. These transactions include<ref name="StandardTrans" />: 
 
* claims and encounter information
* payment and remittance advice
* claims status
* eligibility, enrollment and disenrollment
* referrals and authorizations
* coordination of benefits and premium payment
 
The standard does not encompass telephone voice response and fax-back systems.<ref name="TexMed">{{cite web |url=https://www.texmed.org/Template.aspx?id=1599 |title=What Are HIPAA Transaction and Code Sets Standards? |publisher=Texas Medical Association |date=29 October 2019 |accessdate=09 February 2022}}</ref>
 
The Privacy Rule covers a healthcare provider whether it electronically transmits these transactions directly or uses a billing service or other third party to do so on its behalf. Healthcare providers include all “providers of services” (e.g., institutional providers such as hospitals) and “providers of medical or health services” (e.g., non-institutional providers such as physicians, dentists and other practitioners) as defined by Medicare, and any other person or organization that furnishes, bills, or is paid for healthcare.<ref name="HHSSummaryHIPAA" />
 
===Business associates===
[[File:Corporate Woman Shaking Hands With a Corporate Man.svg|right|500px]]Healthcare providers don't always do everything that involves patient information themselves. There are very often other entities contracted for a variety of services. As a result of the [[Health Information Technology for Economic and Clinical Health Act]] (HITECH) that was passed in 2009, HIPAA has also been expanded to include business associates. Business associates are those persons or organizations that function on behalf of a covered entity, such as a doctor, and who either use or receive identifiable health information.<ref name="PrivacyGuide">{{cite web |url=https://www.medscape.org/viewarticle/781892_2 |archiveurl=https://web.archive.org/web/20171004095823/http://www.medscape.org/viewarticle/781892_2 |title=Patient Privacy: A Guide for Providers |work=Medscape |author=Centers for Medicare & Medicaid Services |archivedate=04 October 2017 |accessdate=09 February 2022}}</ref>
 
According to 45 CFR 160 Part 103, business associate functions or activities on behalf of a covered entity include<ref name="45CFR160">{{cite web |url=https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-160/subpart-A/section-160.103 |title=Code of Federal Regulations Title 45, Subtitle A, Subchapter C, Part 160, Subpart A, 160.103 |publisher=US Government Publishing Office |accessdate=09 February 2022}}</ref>:
 
* claims processing
* data analysis
* utilization review
* billing
* legal services
* actuarial services
* accounting
* consulting
* data aggregation
* management
* administrative services
* accreditation
* financial services
 
A business associate is also anyone—not just those in the workforce of the covered entity—who performs any activities for a covered entity that are covered by HIPAA. Consider that an "...and all other related" kind of clause. Subcontractors of business associates who fit these criteria are also subject to HIPAA.<ref name="45CFR160" />
 
However, persons or organizations are not considered business associates if their functions or services do not involve the use or disclosure of protected health information, and where any access to protected health information by such persons would be incidental, if at all. A covered entity can also be the business associate of another covered entity.<ref name="HHSSummaryHIPAA" />
 
Here are some examples of business associates, as described by the HHS<ref name="BusinessAssociates">{{cite web |url=https://www.hhs.gov/hipaa/for-professionals/privacy/guidance/business-associates/index.html |title=Business Associates |author=Office of Civil Rights |publisher=U.S. Department of Health & Human Services |date=24 May 2019 |accessdate=09 February 2022}}</ref> :
 
* third party administrator who assists a health plan with claims processing
* CPA firm whose accounting services to a healthcare provider involve access to protected health information
* attorney whose legal services to a health plan involve access to protected health information
* consultant who performs utilization reviews for a hospital
* healthcare clearinghouse that translates a claim from a non-standard format into a standard transaction on behalf of a healthcare provider and forwards the processed transaction to a payer
* independent medical transcriptionist who provides transcription services to a physician
* pharmacy benefits manager who manages a health plan’s pharmacist network
 
====Business associate agreement (BAA)====
According to the HHS, "A covered entity’s contract or other written arrangement with its business associate must contain the elements specified at 45 CFR 164.504(e)." Provisions need to<ref name="BusinessAssociates" />:
 
* describe the permitted and required uses of protected health information by the business associate;
* provide that the business associate will not use or further disclose the protected health information (PHI) other than as permitted or required by the contract or as required by law; and
* require the business associate to use appropriate safeguards to prevent a use or disclosure of the protected health information other than as provided for by the contract.
 
Where a covered entity (the party who has contracted the BA) knows of a material breach or violation by the business associate of the contract or agreement, the covered entity is required to take reasonable steps to cure the breach or end the violation, and if such steps are unsuccessful, to terminate the contract or arrangement. If termination of the contract or agreement is not feasible, a covered entity is required to report the problem to the HHS Office for Civil Rights (OCR). 
 
HHS provides a useful [https://www.hhs.gov/hipaa/for-professionals/covered-entities/sample-business-associate-agreement-provisions/index.html sample BAA]] on its website for reference.
 
====Exceptions to BAA requirement====
There are exceptions to the requirement for a covered entity to have a BAA with a business associate before protected health information may be disclosed to the person or entity. Per 45 CFR 164.502(e), the Privacy Rule includes the following exceptions to the business associate standard<ref name="BusinessAssociates" />: 
 
# disclosures by a covered entity to a healthcare provider for treatment of the individual. For example:
## A hospital is not required to have a business associate contract with the specialist to whom it refers a patient and transmits the patient’s medical chart for treatment purposes.
## A physician is not required to have a business associate contract with a [[laboratory]] as a condition of disclosing protected health information for the treatment of an individual.  
## A hospital laboratory is not required to have a business associate contract to disclose protected health information to a reference laboratory for treatment of the individual. 
# disclosures to a health plan sponsor, such as an employer, by a group health plan, or by the health insurance issuer or HMO that provides the health insurance benefits or coverage for the group health plan, provided that the group health plan’s documents have been amended to limit the disclosures or one of the exceptions at 45 CFR 164.504(f) have been met. 
# the collection and sharing of protected health information by a health plan that is a public benefits program, such as Medicare, and an agency other than the agency administering the health plan, such as the Social Security Administration, that collects protected health information to determine eligibility or enrollment, or determines eligibility or enrollment, for the government program, where the joint activities are authorized by law. 
 
'''Other situations in which a business associate contract is NOT required'''
 
Some additional scenarios where a BAA is not necessary include<ref name="BusinessAssociates" />:
 
* when a healthcare provider discloses protected health information to a health plan for payment purposes, or when the healthcare provider simply accepts a discounted rate to participate in the health plan’s network. A provider that submits a claim to a health plan and a health plan that assesses and pays the claim are each acting on its own behalf as a covered entity, and not as the “business associate” of the other.  
* with persons or organizations (e.g., janitorial service or electrician) whose functions or services do not involve the use or disclosure of protected health information, and where any access to protected health information by such persons would be incidental, if at all.
* where a person or organization acts merely as a conduit for protected health information, for example the U.S. Postal Service, certain private couriers and their electronic equivalents.
* covered entities who participate in an Organized Healthcare Arrangement (OHCA) to make disclosures that relate to the joint healthcare activities of the OHCA.
* when a group health plan purchases insurance from a health insurance issuer or HMO. The relationship between the group health plan and the health insurance issuer or HMO is defined by the Privacy Rule as an OHCA, with respect to the individuals they jointly serve or have served. Thus, these covered entities are permitted to share protected health information that relates to the joint healthcare activities of the OHCA.
* where one covered entity purchases a health plan product or other insurance, for example, reinsurance, from an insurer. Each entity is acting on its own behalf when the covered entity purchases the insurance benefits, and when the covered entity submits a claim to the insurer and the insurer pays the claim.
* the disclosure of protected health information to a researcher for research purposes, either with patient authorization, pursuant to a waiver under 45 CFR 164.512(i), or as a limited data set pursuant to 45 CFR 164.514(e). Because the researcher is not conducting a function or activity regulated by the Administrative Simplification Rules, such as payment or healthcare operations, or providing one of the services listed in the definition of “business associate” at 45 CFR 160.103, the researcher is not a business associate of the covered entity, and no business associate agreement is required.
* when a financial institution processes consumer-conducted financial transactions by debit, credit, or other payment card, clears checks, initiates or processes electronic funds transfers, or conducts any other activity that directly facilitates or effects the transfer of funds for payment for healthcare or health plan premiums. When it conducts these activities, the financial institution is providing its normal banking or other financial transaction services to its customers; it is not performing a function or activity for, or on behalf of, the covered entity.  
 
===Others (plans, etc.)===
The other categories of "covered entities" who are subject to the requirements of HIPAA include health plans and healthcare clearinghouses.
 
====Health plans====
[[File:001feknerLeichtINSURANCE.jpg|left|220px]]Whether individual or group, health plans that provide or pay the cost of healthcare, dental care, vision care, and prescription drug costs are covered entities under HIPAA. This includes health maintenance organizations (HMOs); Medicare, Medicaid, Medicare+Choice and Medicare supplement insurers; and long-term care insurers (excluding nursing home fixed-indemnity policies).
 
Covered entity health plans can be employer-sponsored group health plans, government- and church-sponsored health plans or multi-employer health plans.<ref name="HHSSummaryHIPAA" />
 
'''Health plan exceptions'''
 
The exceptions where certain health plans do not constitute covered entities include<ref name="HHSSummaryHIPAA" />:
{{flowlist|
# group health plans with less than 50 participants, administered solely by the employer that established and maintains the plan.
# two types of government-funded programs:
## those whose principal purpose is not providing or paying the cost of healthcare, such as the food stamps program (SNAP).
## those programs whose principal activity is directly providing healthcare, such as a community health center, or the making of grants to fund the direct provision of healthcare.
# certain types of insurance entities, particularly those who only provide:
## workers’ compensation.
## automobile insurance.
## property and casualty insurance.}}
 
However, if an insurance entity has more than one line of business, one of which may be identified separately as a health plan, then HIPAA regulations do apply to the health plan line of business.
 
====Healthcare clearinghouses====
Health care clearinghouses are entities that process nonstandard information they receive from another entity into a standard (i.e., standard format or data content), or vice versa.
 
In most instances, healthcare clearinghouses will receive individually-identifiable health information only when they are providing these processing services to a health plan or healthcare provider as a [[#Business Associate|Business Associate]]. In those cases, only certain provisions of the Privacy Rule are applicable to uses and disclosures of protected health information.<ref name="HHSSummaryHIPAA" />
 
Healthcare clearinghouses include<ref name="HHSSummaryHIPAA" />:
 
* billing services
* repricing companies
* community health management information systems
* value-added networks and switches (if they perform clearinghouse functions)
 
 
==Protected health information==
[[File:Locked Desktop Computer Cartoon.svg|right|300px]]At the center of all of HIPAA and HITECH is a single term and its definition: protected health information or PHI. This is the information that can be linked to a patient and has been identified by the U.S. government as being private to a patient. As such, PH is protected by both the Privacy Rule and Security Rule of HIPAA, as well as HITECH (for electronic PHI). These protections exist so that unauthorized sharing is prevented or at least minimized, and access is controlled, with significant sanctions and measures available to be applied in the even of breaches.
 
The HHS and the Privacy Rule define PHI in the following way<ref name="HHSSummaryHIPAA" />:
 
<blockquote>The Privacy Rule protects all "individually identifiable health information" held or transmitted by a covered entity or its business associate, in any form or media, whether electronic, paper, or oral. The Privacy Rule calls this information "protected health information (PHI)."
 
“Individually identifiable health information” is information, including demographic data, that relates to:
 
: ▪ the individual’s past, present or future physical or mental health or condition,
: ▪ the provision of health care to the individual, or
: ▪ the past, present, or future payment for the provision of health care to the individual,
 
and that identifies the individual or for which there is a reasonable basis to believe it can be used to identify the individual.</blockquote>
 
According to the Privacy Rule, PHI does not include employment records that a covered entity maintains in its capacity as an employer, and education and certain other records subject to, or defined in, the Family Educational Rights and Privacy Act, 20 U.S.C. §1232g.<ref name="HHSSummaryHIPAA" />
 
HIPAA lists 18 identifiers that qualify as PHI, and as such they must be kept secure and private in the ways that are set down in HIPAA and HITECH. These identifiers are<ref name="45CFR164">{{cite web |url=https://www.ecfr.gov/current/title-45/subtitle-A/subchapter-C/part-164/subpart-E/section-164.514 |title=Code of Federal Regulations, Title 45, Subtitle A, Subchapter C, Part 164, Subpart E, 164.514 |publisher=U.S. Government Publishing Office |accessdate=09 February 2022}}</ref>:
 
# names
# all geographical subdivisions smaller than a state, including street address, city, county, precinct, zip code, and their equivalent geocodes, except for the initial three digits of a zip code, if according to the current publicly available data from the Bureau of the Census: (1) The geographic unit formed by combining all zip codes with the same three initial digits contains more than 20,000 people; and (2) The initial three digits of a zip code for all such geographic units containing 20,000 or fewer people is changed to 000
# all elements of dates (except year) for dates directly related to an individual, including birth date, admission date, discharge date, date of death; and all ages over 89 and all elements of dates (including year) indicative of such age, except that such ages and elements may be aggregated into a single category of age 90 or older
# phone numbers
# fax numbers
# electronic mail (email) addresses
# Social Security numbers
# medical record numbers (MRNs)
# health plan beneficiary numbers
# account numbers
# certificate/license numbers
# vehicle identifiers and serial numbers, including license plate numbers
# device identifiers and serial numbers
# web addresses or Uniform Resource Locators (URLs)
# Internet Protocol (IP) address numbers
# biometric identifiers, including finger and voice prints
# full face photographic images and any comparable images
# any other unique identifying number, characteristic, or code (note this does not mean the unique code assigned by the investigator to code the data)
 
There are also additional standards and criteria to protect individual's privacy from re-identification. Any code used to replace the identifiers in data sets cannot be derived from any information related to the individual and the master codes, nor can the method to derive the codes be disclosed. For example, a subject's initials cannot be used to code their data because the initials are derived from their name. Additionally, the researcher must not have actual knowledge that the research subject could be re-identified from the remaining identifiers in the PHI used in the research study. In other words, the information would still be considered identifiable if there were a way to identify the individual even though all of the 18 identifiers were removed.<ref name="HHSSummaryHIPAA" />
 
===De-identified PHI===
The government recognizes that there are instances where there is a need to use and/or transmit PHI. Since the key here is whether it can be used to identify the individual, HIPAA provides for two approved "de-identification" methods.
 
The first is the “Safe Harbor” approach, which permits a covered entity to consider data to be de-identified if it removes the 18 types of identifiers and has no actual knowledge that the remaining information could be used to identify an individual either alone or in combination with other information.<ref name="De-ID">{{cite web |url=https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/2010-de-identification-workshop/index.html |title=Workshop on the HIPAA Privacy Rule's De-Identification Standard |author=Office of Civil Rights |publisher=U.S. Department of Health & Human Services |date=28 March 2017 |accessdate=09 February 2022}}</ref>  
 
The second method is the "Statistical" approach, which allows disclosure of PHI in any form provided that a qualified statistical or scientific expert concludes, through the use of accepted analytic techniques, that the risk the information could be used alone or in combination with other reasonably available information to identify the subject is very small (statistically insignificant).<ref name="De-ID" />
 
===Privacy Rule: General principle for use and disclosure===
In general, to help in deciding when to disclose or not, it is useful to keep the Privacy Rule's purpose in mind: to define and limit the circumstances in which an individual’s protected heath information may be used or disclosed by covered entities.
 
A covered entity may not use or disclose protected health information, except either:
 
# as the Privacy Rule permits or requires; or
# as the individual who is the subject of the information (or the individual’s personal representative) authorizes in writing.
 
Similarly, there are only two cases where a covered entity is actually required to disclose PHI<ref name="HHSSummaryHIPAA" />:
 
# when the individual to whom the PHI applies (or authorized representative) requests it in writing; or
# when the HHS is undertaking a compliance investigation, review or enforcement action and requests it.


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
<!---Place all category tags here-->

Latest revision as of 19:33, 17 February 2023

Sandbox begins below

  • Discussion and practical use of artificial intelligence (AI) in the laboratory is, perhaps to the surprise of some, not a recent phenomena. In the mid-1980s, researchers were developing computerized AI systems able "to develop automatic decision rules for follow-up analysis of [clinical laboratory] tests depending on prior information, thus avoiding the delays of traditional sequential testing and the costs of unnecessary parallel testing."[1] In fact, discussion of AI in general was ongoing even in the mid-1950s.[2][3]
  • Hiring demand for laboratorians with AI experience (2015–18) has historically been higher in non-healthcare industries, such as manufacturing, mining, and agriculture, shedding a light on how AI adoption in the clinical setting may be lacking. According to the Brookings Institute, "Even for the relatively-skilled job postings in hospitals, which includes doctors, nurses, medical technicians, research lab workers, and managers, only approximately 1 in 1,250 job postings required AI skills." They add: "AI adoption may be slow because it is not yet useful, or because it may not end up being as useful as we hope. While our view is that AI has great potential in health care, it is still an open question."[4]
  • Today, AI is being practically used in not only clinical diagnostic laboratories but also clinical research labs, life science labs, and research and development (R&D) labs, and more. Practical uses of AI can be found in:
clinical research labs[5]
hospitals[5][6]
medical diagnostics labs[6][7][8][9][10][11]
chromatography labs[11]
biology and life science labs[12]
medical imaging centers[13]
ophthalmology clinics[14]
reproduction clinics[15][16][17]
digital pathology labs[18]
material testing labs[19][20][21]
chemical experimentation and molecular discovery labs[21][22][23]
quantum physics labs[24]
  • What's going on in these labs?
Materials science: The creation of "a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions ..."[19]
Materials science: "Most of the applications of [machine learning (ML)] in chemical and materials sciences, as we have said, feature supervised learning algorithms. The goal there is to supplement or replace traditional modeling methods, at the quantum chemical or classical level, in order to predict the properties of molecules or materials directly from their structure or their chemical composition ... Our research group was applying the same idea on a narrower range of materials, trying to confirm that for a given chemical composition, geometrical descriptors of a material’s structure could lead to accurate predictions of its mechanical features."[20]
Life science: "In biological experiments, we generally cannot as easily declare victory, but we can use the systems biology approach of cycling between experimentation and modelling to see which sequences, when tested, are most likely to improve the model. In artificial intelligence, this is called active learning, and it has some similarity to the way in which we as humans learn as infants: we get some help from parents and teachers, but mainly model the world around us by exploring it and interacting with it. Ideally then, we would recreate such an environment for our machine learning algorithms in the laboratory, where we start with an initial ‘infant’ model of a certain regulatory system or protein function and let the computer decide what sequence designs to try out – a deep learning version of the ‘robot scientist’. Microbes are ideal organisms for such an approach, given the ease and speed with which they can be grown and genetically manipulated. Combined with laboratory automation, many microbial experiments can (soon) be performed with minimal human intervention, ranging from strain construction and screening, such as operated by Amyris, Gingko, Transcriptic, etc., to full-genome engineering or even the design of microbial ecologies."[12]
Digital pathology: "The collaboration combines two AI solutions, VistaPath’s Sentinel, the world’s first automated tissue grossing platform, and Gestalt’s AI Requisition Engine (AIRE), a leading-edge AI algorithm for accessioning, to raise the bar in AI-driven pathology digitization. Designed to make tissue grossing faster and more accurate, VistaPath’s Sentinel uses a high-quality video system to assess specimens and create a gross report 93% faster than human technicians with 43% more accuracy. It not only improves on quality by continuously monitoring the cassette, container, and tissue to reduce mislabeling and specimen mix-up, but also increases traceability by retaining original images for downstream review."[25]
Chemistry and molecular science: "The benefits of combining automated experimentation with a layer of artificial intelligence (AI) have been demonstrated for flow reactors, photovoltaic films, organic synthesis, perovskites and in formulation problems. However, so far no approaches have integrated mobile robotics with AI for chemical experiments. Here, we built Bayesian optimization into a mobile robotic workflow to conduct photocatalysis experiments within a ten-dimensional space."[22]
Chemistry and immunology: "Chemistry and immunology laboratories are particularly well-suited to leverage machine learning because they generate large, highly structured data sets, Schulz and others wrote in a separate review paper. Labor-intensive processes used for interpretation and quality control of electrophoresis traces and mass spectra could benefit from automation as the technology improves, they said. Clinical chemistry laboratories also generate digital images—such as urine sediment analysis—that may be highly conducive to semiautomated analyses, given advances in computer vision, the paper noted."[26]
Clinical research: "... retrospective analysis of existing patient data for descriptive and clustering purposes [and] automation of knowledge extraction, ranging from text mining, patient selection for trials, to generation of new research hypotheses ..."[5]
Clinical research: "AI ... offers a further layer to the laboratory system by analyzing all experimental data collected by experiment devices, whether it be a sensor or a collaborative robot. From data collected, AI is able to produce hypotheses and predict which combination of materials or temperature is desired for the experiment. In short, this system will allow scientists to be aided by a highly intelligent system which is constantly monitoring and analyzing the experimental output. In this way, AI will help an experiment from its inception to conclusion."[27]
Clinical research/medical diagnostics: "Artificial intelligence (AI) in the laboratory is primarily used to make sense of big data, the almost impossibly large sets of data that biologists and pharmaceutical R&D teams are accustomed to working with. AI algorithms can parse large amounts of data in a short amount of time and turn that data into visualizations that viewers can easily understand. In certain data-intensive fields, such as genomic testing and virus research, AI algorithms are the best way to sort through the data and do some of the pattern recognition work."[28]
Medical diagnostics: Development and implementation of clinical decision support systems [5][6]
Medical diagnostics: "Finally, in the laboratory, AI reduces the number of unnecessary blood samples when diagnosing infection. Instead of the 'gold standard blood sample' that takes 24-72 hours, the algorithm can predict the outcome of the blood sample with almost 80% accuracy based on demographics, vital signs, medications, and laboratory and radiology results. These are all examples of how Artificial Intelligence can be used to test better and faster with information that already exists. This saves time and costs."[10]
Medical diagnostics: "Chang sees two overarching classes of AI models: those that tackle internal challenges in the lab, such as how to deliver more accurate results to clinicians; and those that seek to identify cohorts of patients and care processes to close quality gaps in health delivery systems. The lab, however, 'isn’t truly an island,' said Michelle Stoffel, MD, PhD, associate chief medical information officer for laboratory medicine and pathology at M Health Fairview and the University of Minnesota in Minneapolis. 'When other healthcare professionals are working with electronic health records or other applications, there could be AI-driven tools, or algorithms used by an institution’s systems that may draw on laboratory data.'"[26]
Medical diagnostics: AI is used for the formulation of reference ranges, improvement of quality control, and automated interpretation of results. "Continuous monitoring of specimen acceptability, collection and transport can result in the prompt identification and correction of problems, leading to improved patient care and a reduction in unnecessary redraws and delays in reporting results."[8]
Reproduction science: "The field of AI is the marriage of humans and computers while reproductive medicine combines clinical medicine and the scientific laboratory of embryology. The application of AI has the potential to disconnect healthcare professionals from patients through algorithms, automated communication, and clinical imaging. However, in the embryology laboratory, AI, with its focus on gametes and embryos, can avoid the same risk of distancing from the patient. Areas of application of AI in the laboratory would be to enhance and automate embryo ranking through analysis of images, the ultimate goal being to predict successful implantation. Might such a trend obviate the need for embryo morphological assessment, time-lapse imaging and preimplantation genetic testing for aneuploidy (PGT-A), including mosaicism. Additionally, AI could assist with automation through analysis of testicular sperm samples searching for viable gametes, embryo grading uniformity."[15]
Chromatography-heavy sciences: " A great example of this is AI in the Liquid Chromatography Mass Spectrometry (LC-MS) field. LC-MS is a great tool used to measure various compounds in the human body, including everything from hormone levels to trace metals. One of the ways AI has already integrated with LC-MS is how it cuts down on the rate limiting steps of LC-MS, which more often than not are sample prep and LC separations. One system that Physicians Lab has made use of is parallel processing using SCIEX MPX 2.0 High Throughput System. This system can couple parallel runs with one LCMS instrument, resulting in twice the speed with no loss to accuracy. It can do this by staggering two runs either using the same method, or different methods entirely. What really makes this system great is its ability to automatically detect carryover and inject solvent blanks to clean the instrument. The system will then continue its analyzing, while automatically reinjecting samples that may be affected by the carryover. It will also flag high concentration without user input, allowing for easy detection of possibly faulty samples. This allows it to operate without users from startup to shut down. Some of the other ways that it can be used to increase efficiency are by using integrated network features to work on anything from streamlining management to increased throughput."[11]
Most any lab: "Predictive analytics, for example, is one tool that the Pistoia Alliance is using to better understand laboratory instruments and how they might fail over time... With the right data management strategies and careful consideration of metadata, how to best store data so that it can be used in future AI and ML workflows is essential to the pursuit of AI in the laboratory. Utilizing technologies such as LIMS and ELN enables lab users to catalogue data, providing context and instrument parameters that can then be fed into AI or ML systems. Without the correct data or with mismatched data types, AI and ML will not be possible, or at the very least, could provide undue bias trying to compare data from disparate sources."[29]
Most any lab: "When the actionable items are automatically created by Optima, the 'engine' starts working. An extremely sophisticated algorithm is able to assign the tasks to the resources, both laboratory personnel and instruments, according to the system configuration. Optima, thanks to a large amount of time dedicated to research the best way to automate this critical process, is able to automate most of the lab resource scheduling."[30]
  • A number of challenges exist in the realm of effectively and securely implementing AI in the laboratory. This includes:
Ethical and privacy challenges[5][26][31]
Algorithmic limitations[4]
Data access limitations, including "where to get it, how to share it, and how to know when you have enough to train a machine-learning system that will produce good results"[4][26][32][33]
Data integration and transformation issues[5][33]
Regulatory barriers[4][7]
Misaligned incentives[4]
Lack of knowledgeable/skilled talent[5][26][32][33]
Cost of skilled talent and infrastructure for maintaining and updating AI systems[26]
Legacy systems running outdated technologies[32]
Lack of IT systems or specialized software systems[33]
Lack of standardized, best practices-based methods of validating algorithms[26]
Failure to demonstrate real-world performance[7]
Failure to meet the needs of the professionals using it[7]
  • Given those challenges, some considerations should be made about implementing AI-based components in the laboratory. Examples include:
Clinical diagnostics: "From an industry and regulatory perspective, however, only the intended uses supported from the media manufacturer can be supported from AI applications, unless otherwise justified and substantive evidence is presented for additional claims support. This means strict adherence to specimen type and incubation conditions. Considering that the media was initially developed for human assessment using the well-trained microbiologist eye, and not an advanced imaging system with or without AI, this paradigm should shift to allow advancements in technology to challenge the status-quo of decreasing media read-times especially, as decreased read-times assist with laboratory turnaround times and thus patient management. Perhaps with an increasing body of evidence to support any proposed indications for use, either regulatory positions should be challenged, or manufacturers of media and industry AI-development specialists should work together to advance the field with new indications for use.
While the use of AI in the laboratory setting can be highly beneficial there are still some issues to be addressed. The first being phenotypically distinct single organism polymorphisms that may be interpreted by AI as separate organisms, as may also be the case for a human assessment, as well as small colony variant categorization. As detailed earlier, the broader the inputs, the greater the generalization of the model, and the higher the likelihood of algorithm accuracy. In that respect, understanding and planning around these design constraints is critical for ultimate deployment of algorithms. Additionally, expecting an AI system to correctly categorize “contamination” is a difficult task as often this again seemingly innocuous decision is dependent on years of experience and understanding the specimen type and the full clinical picture with detailed clinical histories. In this respect, a fully integrated AI-LIS system where all data is available may assist, but it is currently not possible to gather this granular detail needed to make this assessment reliable."[9]
Clinical diagnostics and pathology: "Well, if I’ve learned anything in my research into this topic, it’s that AI implementation needs to be a two-way street. First, any company who is active in this space must reach out to pathologists and laboratory medicine professionals to understand their daily workflows, needs, and pain points in as much detail as possible. Second, pathologists, laboratory medicine professionals, and educators must all play their important part – willingly offering their time and expertise when it is sought or proactively getting involved. And finally, it’s clear that there is an imbalanced focus on certain issues – with privacy, respect, and sustainability falling by the wayside."[31]
Healthcare: "While we are encouraged by the promise shown by AI in healthcare, and more broadly welcome the use of digital technologies in improving clinical outcomes and health system productivity, we also recognize that caution must be exercised when introducing any new healthcare technology. Working with colleagues across the NHS Transformation Directorate, as well as the wider AI community, we have been developing a framework to evaluate AI-enabled solutions in the health and care policy context. The aim of the framework is several-fold but is, at its core, a tool with which to highlight to healthcare commissioners, end users, patients and members of the public the considerations to be mindful when introducing AI to healthcare settings."[34]
Most any lab: A code of AI ethics should address objectivity, privacy, transparency, accountability, and sustainability in any AI implementation.[31]
Most any lab: "Another approach is to implement an AI program alongside a manual process, assessing its performance along the way, as a means to ease into using the program. 'I think one of the most impactful things that laboratorians can do today is to help make sure that the lab data that they’re generating is as robust as possible, because these AI tools rely on new training sets, and their performance is really only going to be as good as the training data sets they’re given,' Stoffel said."[26]

References

  1. Berger-Hershkowitz, H.; Neuhauser, D. (1987). "Artificial intelligence in the clinical laboratory". Cleveland Clinic Journal of Medicine 54 (3): 165–166. doi:10.3949/ccjm.54.3.165. ISSN 0891-1150. PMID 3301059. https://www.ccjm.org/content/54/3/165. 
  2. Minsky, M. (17 December 1956). Heuristic Aspects of the Artificial Intelligence Problem. Ed Services Technical Information Agency. https://books.google.com/books?hl=en&lr=&id=fvWNo6_IZGUC&oi=fnd&pg=PA1. Retrieved 16 February 2023. 
  3. Minsky, Marvin (1 January 1961). "Steps toward Artificial Intelligence". Proceedings of the IRE 49 (1): 8–30. doi:10.1109/JRPROC.1961.287775. ISSN 0096-8390. http://ieeexplore.ieee.org/document/4066245/. 
  4. 4.0 4.1 4.2 4.3 4.4 Goldfarb, A.; Teodoridis, F. (9 March 2022). "Why is AI adoption in health care lagging?". Series: The Economics and Regulation of Artificial Intelligence and Emerging Technologies. Brookings Institute. https://www.brookings.edu/research/why-is-ai-adoption-in-health-care-lagging/. Retrieved 17 February 2023. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Damiani, A.; Masciocchi, C.; Lenkowicz, J.; Capocchiano, N. D.; Boldrini, L.; Tagliaferri, L.; Cesario, A.; Sergi, P. et al. (7 December 2021). "Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator". Frontiers in Computer Science 3: 768266. doi:10.3389/fcomp.2021.768266. ISSN 2624-9898. https://www.frontiersin.org/articles/10.3389/fcomp.2021.768266/full. 
  6. 6.0 6.1 6.2 University of California, San Francisco; Adler-Milstein, Julia; Aggarwal, Nakul; University of Wisconsin-Madison; Ahmed, Mahnoor; National Academy of Medicine; Castner, Jessica; Castner Incorporated et al. (29 September 2022). "Meeting the Moment: Addressing Barriers and Facilitating Clinical Adoption of Artificial Intelligence in Medical Diagnosis". NAM Perspectives 22 (9). doi:10.31478/202209c. PMC PMC9875857. PMID 36713769. https://nam.edu/meeting-the-moment-addressing-barriers-and-facilitating-clinical-adoption-of-artificial-intelligence-in-medical-diagnosis. 
  7. 7.0 7.1 7.2 7.3 Government Accountability Office (GAO); National Academy of Medicine (NAM) (September 2022). "Artificial Intelligence in Health Care: Benefits and Challenges of Machine Learning Technologies for Medical Diagnostics" (PDF). Government Accountability Office. https://www.gao.gov/assets/gao-22-104629.pdf. Retrieved 16 February 2023. 
  8. 8.0 8.1 Wen, Xiaoxia; Leng, Ping; Wang, Jiasi; Yang, Guishu; Zu, Ruiling; Jia, Xiaojiong; Zhang, Kaijiong; Mengesha, Birga Anteneh et al. (24 September 2022). "Clinlabomics: leveraging clinical laboratory data by data mining strategies" (in en). BMC Bioinformatics 23 (1): 387. doi:10.1186/s12859-022-04926-1. ISSN 1471-2105. PMC PMC9509545. PMID 36153474. https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04926-1. 
  9. 9.0 9.1 DeYoung, B.; Morales, M.; Giglio, S. (4 August 2022). "Microbiology 2.0–A “behind the scenes” consideration for artificial intelligence applications for interpretive culture plate reading in routine diagnostic laboratories". Frontiers in Microbiology 13: 976068. doi:10.3389/fmicb.2022.976068. ISSN 1664-302X. PMC PMC9386241. PMID 35992715. https://www.frontiersin.org/articles/10.3389/fmicb.2022.976068/full. 
  10. 10.0 10.1 Schut, M. (1 December 2022). "Get better with bytes". Amsterdam UMC. https://www.amsterdamumc.org/en/research/news/get-better-with-bytes.htm. Retrieved 16 February 2023. 
  11. 11.0 11.1 11.2 Albano, V.; Morris, C.; Kent, T. (6 December 2019). "Calculations to Diagnosis: The Artificial Intelligence Shift That’s Already Happening". Physicians Lab. https://physicianslab.com/calculations-to-diagnosis-the-artificial-intelligence-shift-thats-already-happening/. Retrieved 16 February 2023. 
  12. 12.0 12.1 de Ridder, Dick (1 January 2019). "Artificial intelligence in the lab: ask not what your computer can do for you" (in en). Microbial Biotechnology 12 (1): 38–40. doi:10.1111/1751-7915.13317. PMC PMC6302702. PMID 30246499. https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13317. 
  13. Brandao-de-Resende, C.; Bui, M.; Daneshjou, R. et al. (11 October 2022). "AI Webinar: Clinical Adoption of AI Across Image Producing Specialties". Society for Imaging Informatics in Medicine. https://siim.org/page/22w_clinical_adoption_of_ai. 
  14. He, Mingguang; Li, Zhixi; Liu, Chi; Shi, Danli; Tan, Zachary (1 July 2020). "Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge" (in en). Asia-Pacific Journal of Ophthalmology 9 (4): 299–307. doi:10.1097/APO.0000000000000301. ISSN 2162-0989. https://journals.lww.com/10.1097/APO.0000000000000301. 
  15. 15.0 15.1 Trolice, Mark P.; Curchoe, Carol; Quaas, Alexander M (1 July 2021). "Artificial intelligence—the future is now" (in en). Journal of Assisted Reproduction and Genetics 38 (7): 1607–1612. doi:10.1007/s10815-021-02272-4. ISSN 1058-0468. PMC PMC8260235. PMID 34231110. https://link.springer.com/10.1007/s10815-021-02272-4. 
  16. European Society of Human Reproduction and Embryology (6 July 2022). "Annual Meeting 2022: Artificial intelligence in embryology and ART". Focus on Reproduction. https://www.focusonreproduction.eu/article/ESHRE-News-22AI. Retrieved 16 February 2023. 
  17. Hinckley, M. (17 March 2021). "Applying AI (Artificial Intelligence) in the Lab for Better IVF Success". Reproductive Science Center Blog. Reproductive Science Center of the Bay Area. https://rscbayarea.com/blog/applying-ai-for-better-ivf-success. Retrieved 16 February 2023. 
  18. Yousif, M.; McClintock, D.S.; Yao, K. (2021). "Artificial intelligence is the key driver for digital pathology adoption". Clinical Laboratory Int. PanGlobal Media. https://clinlabint.com/artificial-intelligence-is-the-key-driver-for-digital-pathology-adoption/. Retrieved 16 February 2023. 
  19. 19.0 19.1 MacLeod, B. P.; Parlane, F. G. L.; Morrissey, T. D.; Häse, F.; Roch, L. M.; Dettelbach, K. E.; Moreira, R.; Yunker, L. P. E. et al. (15 May 2020). "Self-driving laboratory for accelerated discovery of thin-film materials" (in en). Science Advances 6 (20): eaaz8867. doi:10.1126/sciadv.aaz8867. ISSN 2375-2548. PMC PMC7220369. PMID 32426501. https://www.science.org/doi/10.1126/sciadv.aaz8867. 
  20. 20.0 20.1 Chibani, Siwar; Coudert, François-Xavier (1 August 2020). "Machine learning approaches for the prediction of materials properties" (in en). APL Materials 8 (8): 080701. doi:10.1063/5.0018384. ISSN 2166-532X. http://aip.scitation.org/doi/10.1063/5.0018384. 
  21. 21.0 21.1 Mullin, R. (28 March 2021). "The lab of the future is now". Chemical & Engineering News 99 (11). Archived from the original on 06 May 2022. https://web.archive.org/web/20220506192926/http://cen.acs.org/business/informatics/lab-future-ai-automated-synthesis/99/i11. Retrieved 16 February 2023. 
  22. 22.0 22.1 Burger, Benjamin; Maffettone, Phillip M.; Gusev, Vladimir V.; Aitchison, Catherine M.; Bai, Yang; Wang, Xiaoyan; Li, Xiaobo; Alston, Ben M. et al. (9 July 2020). "A mobile robotic chemist" (in en). Nature 583 (7815): 237–241. doi:10.1038/s41586-020-2442-2. ISSN 0028-0836. https://www.nature.com/articles/s41586-020-2442-2.epdf?sharing_token=HOkIS6P5VIAo2_l3nRELmdRgN0jAjWel9jnR3ZoTv0Nw4yZPDO1jBpP52iNWHbb8TakOkK906_UHcWPTvNxCmzSMpAYlNAZfh29cFr7WwODI2U6eWv38Yq2K8odHCi-qwHcEDP18OjAmH-0KgsVgL5CpoEaQTCvbmhXDSyoGs6tIMe1nuABTeP58z6Ck3uULcdCtVQ66X244FsI7uH8GnA%3D%3D&tracking_referrer=cen.acs.org. 
  23. Lemonick, S. (6 April 2020). "Exploring chemical space: Can AI take us where no human has gone before?". Chemical & Engineering News 98 (13). Archived from the original on 29 July 2020. https://web.archive.org/web/20200729004137/https://cen.acs.org/physical-chemistry/computational-chemistry/Exploring-chemical-space-AI-take/98/i13. Retrieved 16 February 2023. 
  24. Doctrow, B. (16 December 2019). "Artificial intelligence in the laboratory". PNAS Science Sessions. https://www.pnas.org/post/podcast/artificial-intelligence-laboratory. Retrieved 16 February 2023. 
  25. VistaPath (28 July 2022). "VistaPath Launches New Collaboration with Gestalt Diagnostics to Further Accelerate Pathology Digitization". PR Newswire. Cision US Inc. https://www.prnewswire.com/news-releases/vistapath-launches-new-collaboration-with-gestalt-diagnostics-to-further-accelerate-pathology-digitization-301594718.html. Retrieved 17 February 2023. 
  26. 26.0 26.1 26.2 26.3 26.4 26.5 26.6 26.7 Blum, K. (1 January 2023). "A Status Report on AI in Laboratory Medicine". Clinical Laboratory News. American Association for Clinical Chemistry. https://www.aacc.org/cln/articles/2023/janfeb/a-status-report-on-ai-in-laboratory-medicine. Retrieved 17 February 2023. 
  27. Chubb, P. (3 November 2020). "How disruptive technology is helping laboratories combat COVID-19". Datafloq. https://datafloq.com/read/disruptive-technologies-lab-help-us-prepare-future-pandemics/. Retrieved 16 February 2023. 
  28. Stewart, B. (18 March 2021). "Using LIMS for Data Visualization". CSols Insights. CSols, Inc. https://www.csolsinc.com/insights/published-articles/using-lims-for-data-visualization/. Retrieved 17 February 2023. 
  29. "Data Analytics". Scientific Computing World - Building a Smart Laboratory 2020. Europa Science Ltd. 29 January 2021. https://www.scientific-computing.com/feature/data-analytics-0. Retrieved 17 February 2023. 
  30. Optima Team (15 December 2020). "The concept of machine learning applied to lab resources scheduling". Optima Blog. Optima PLC Tracking Tools S.L. https://www.optima.life/blog/the-concept-of-machine-learning-applied-to-lab-resources-scheduling/. Retrieved 17 February 2023. 
  31. 31.0 31.1 31.2 Lee, G.F. (10 October 2022). "The Robot May See You Now: It’s time to stop and think about the ethics of artificial intelligence". The Pathologist. https://thepathologist.com/outside-the-lab/the-robot-may-see-you-now. Retrieved 17 February 2023. 
  32. 32.0 32.1 32.2 Sherwood, L. (10 February 2022). "SLAS 2022: Barriers remain to AI adoption in life sciences". LabPulse.com Showcasts. Science and Medicine Group. https://www.labpulse.com/showcasts/slas/2022/article/15300130/slas-2022-barriers-remain-to-ai-adoption-in-life-sciences. Retrieved 17 February 2023. 
  33. 33.0 33.1 33.2 33.3 Bellini, Claudia; Padoan, Andrea; Carobene, Anna; Guerranti, Roberto (25 November 2022). "A survey on Artificial Intelligence and Big Data utilisation in Italian clinical laboratories" (in en). Clinical Chemistry and Laboratory Medicine (CCLM) 60 (12): 2017–2026. doi:10.1515/cclm-2022-0680. ISSN 1434-6621. https://www.degruyter.com/document/doi/10.1515/cclm-2022-0680/html. 
  34. Chada, Bharadwaj V; Summers, Leanne (10 October 2022). "AI in the NHS: a framework for adoption" (in en). Future Healthcare Journal: fhj.2022–0068. doi:10.7861/fhj.2022-0068. ISSN 2514-6645. PMC PMC9761451. PMID 36561823. https://www.rcpjournals.org/lookup/doi/10.7861/fhj.2022-0068.