Difference between revisions of "User:Shawndouglas/sandbox/sublevel3"

From LIMSWiki
Jump to navigationJump to search
 
(210 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div class="nonumtoc">__TOC__</div>
{{ombox
| type      = notice
| style    = width: 960px;
| text      = This is sublevel2 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}


==Sandbox begins below==
==The laws themselves==
{{Infobox journal article
|name        =
|image        =
|alt          = <!-- Alternative text for images -->
|caption      =
|title_full  = Support Your Data: A research data management guide for researchers
|journal      = ''Research Ideas and Outcomes''
|authors      = Borghi, John A.; Abrams, Stephen; Lowenberg, Daniella; Simms, Stephanie; Chodacki, John
|affiliations = University of California Curation Center
|contact      = Email: john dot borghi at ucop dot edu
|editors      =
|pub_year    = 2018
|vol_iss      = '''4'''
|pages        = e26439
|doi          = [http://10.3897/rio.4.e26439 10.3897/rio.4.e26439]
|issn        = 2367-7163
|license      = [http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International]
|website      = [https://riojournal.com/articles.php?id=26439 https://riojournal.com/articles.php?id=26439]
|download    = [https://riojournal.com/article/26439/download/pdf/ https://riojournal.com/article/26439/download/pdf/] (PDF)
}}
{{ombox
| type      = content
| style    = width: 500px;
| text      = This article should not be considered complete until this message box has been removed. This is a work in progress.
}}
==Abstract==
Researchers are faced with rapidly evolving expectations about how they should manage and share their data, code, and other [[research]] materials. To help them meet these expectations and generally manage and share their data more effectively, we are developing a suite of tools which we are currently referring to as "Support Your Data." These tools— which include a rubric designed to enable researchers to self-assess their current [[Information management|data management]] practices and a series of short guides which provide actionable [[information]] about how to advance practices as necessary or desired—are intended to be easily customizable to meet the needs of researchers working in a variety of institutional and disciplinary contexts.


'''Keywords''': research data management, RDM, data sharing, open data, open science
===1. Federal Telecommunications Act of 1996, Section 255 ([https://www.law.cornell.edu/uscode/text/47/255 47 U.S.C. § 255 - Access by persons with disabilities])===


==Introduction==
<blockquote>'''(b) Manufacturing'''
Research data management (RDM), a term that encompasses activities related to the storage, organization, documentation, and dissemination of data{{efn|For the purposes of this report we are using the term “data” broadly to refer to the inputs or outputs required to evaluate, reproduce, or built upon the analyses or conclusions of a given research project. This includes, but is not limited to, raw data, processed data, research-related code, and documentation pertaining to study parameters and procedures.}}, is central to efforts aimed at maximizing the value of scientific investment (e.g., the Holdren memorandum<ref name="HoldrenIncreasing13">{{cite web |url=https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf |title=Increasing Access to the Results of Federally Funded Scientific Research |author=Holdren, J.P. |publisher=Office of Science and Technology Policy |date=22 February 2013}}</ref>) and addressing concerns related to the integrity of the research process (e.g., Collins and Tabak's discussion on reproducibility<ref name="CollinsPolicy14">{{cite journal |title=Policy: NIH plans to enhance reproducibility |journal=Nature |author=Collins, F.S.; Tabak, L.A. |volume=505 |issue=7485 |pages=612–13 |year=2014 |doi=10.1038/505612a}}</ref>). Unfortunately, when surveyed directly, researchers often acknowledge that they lack the skills and experience needed to manage and share their data effectively.<ref name="BaroneUnmet17">{{cite journal |title=Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators |journal=PLOS Computational Biology |author=Barone, L.; Williams, J.; Micklos, D. |volume=13 |issue=11 |pages=e1005858 |year=2017 |doi=10.1371/journal.pcbi.1005755 |pmid=29049281 |pmc=PMC5654259}}</ref><ref name="FedererBiomedical15">{{cite journal |title=Biomedical Data Sharing and Reuse: Attitudes and Practices of Clinical and Scientific Research Staff |journal=PLoS One |author=Federer, L.M.; Lu, Y.L.; Joubert, D.J. et al. |volume=10 |issue=6 |pages=e0129506 |year=2015 |doi=10.1371/journal.pone.0129506 |pmid=26107811  |pmc=PMC4481309}}</ref><ref name="TenopirResearch14">{{cite journal |title=Research data management services in academic research libraries and perceptions of librarians |journal=Library & Information Science Research |author=Tenopir, C.; Sandusky, R.J.; Allard, S.; Birch, B. |volume=36 |issue=2 |pages=84–90 |year=2014 |doi=10.1016/j.lisr.2013.11.003}}</ref> This disconnect demonstrates the need for tools that bridge the communication gap that exists between the research community, data service providers, and other local, national, and international data stakeholder groups. The development of one such tool, which we are tentatively referring to as “Support Your Data,” is the subject of this project report.
A manufacturer of telecommunications equipment or customer premises equipment shall ensure that the equipment is designed, developed, and fabricated to be accessible to and usable by individuals with disabilities, if readily achievable.


As demonstrated by visualizations such as the research data lifecycle<ref name="CarlsonResearch14">{{cite book |chapter=The use of lifecycle models in developing and supporting data services |title=Research Data Management: Practical Strategies for Information Professionals |author=Carlson, J. |editor=Ray, J.M. |publisher=Purdue University Press |year=2014 |isbn=9781557536648}}</ref><ref name="CoxACritical18">{{cite journal |title=A critical analysis of lifecycle models of the research process and research data management |journal=Aslib Journal of Information Management |author=Cox, A.M.; Tam, W.W.T. |volume=70 |issue=2 |pages=142-57 |doi=10.1108/AJIM-11-2017-0251}}</ref>, RDM is continuous, iterative, and embedded throughout the course of a research project. Well thought out RDM practices make the research process more efficient, facilitate collaboration, and help prevent the loss of data (see Lowndes ''et al.'' 2017<ref name="LowndesOurPath17">{{cite journal |title=Our path to better science in less time using open data science tools |journal=Nature Ecology and Evolution |author=Lowndes, J.S.S.; Best, B.D.; Scarborough, C. et al. |volume=1 |page=0160 |year=2017 |doi=10.1038/s41559-017-0160}}</ref>). Effective RDM is also crucial to establishing the accessibility of data after a project’s conclusion, which is increasingly required by data stakeholders such as research funding agencies and scholarly publishers. Steps must be taken early in the research process to ensure that data can be shared later. For example, the sharing of data from human participants must be approved by an institutional review board (IRB) and described in informed consent documents before any data is collected.<ref name="MeyerPractical18">{{cite journal |title=Practical Tips for Ethical Data Sharing |journal=
'''(c) Telecommunications services'''
Advances in Methods and Practices in Psychological Science |author=Meyer, M.N. |volume=1 |issue=1 |page=131-144 |year=2018 |doi=10.1177/2515245917747656}}</ref> More generally, data that are made available are only useful if formatted, documented, and organized in a manner that enables examination and reuse by others. Related guidance (e.g., from Goodman ''et al.''<ref name="GoodmanTen14">{{cite journal |title=Ten Simple Rules for the Care and Feeding of Scientific Data |journal=PLoS Computational Biology |author=Goodman, A.; Pepe, A.; Blocker, A.W. et al. |volume=10 |issue=4 |page=e1003542 |doi=10.1371/journal.pcbi.1003542}}</ref>) and standards (e.g., FAIR Guiding Principles<ref name="WilkinsonTheFAIR16">{{cite journal |title=The FAIR Guiding Principles for scientific data management and stewardship |journal=Scientific Data |author=Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J. et al. |volume=3 |pages=160018 |year=2016 |doi=10.1038/sdata.2016.18 |pmid=26978244 |pmc=PMC4792175}}</ref>) highlight that proper data management is a key factor in enabling effective data sharing, which is itself a key factor in establishing research transparency and reproducibility.


Complementing calls for improved data management and more widespread data sharing by transparency and reproducibility-related initiatives within the research community<ref name="IoannidisHowTo14">{{cite journal |title=How to Make More Published Research True |journal=PLoS Medicine |author=Ioannidis, J.P.A. |volume=11 |issue=10 |page=e1001747 |doi=10.1371/journal.pmed.1001747}}</ref><ref name="MunafòAManifesto17">{{cite journal |title=A manifesto for reproducible science |journal=Nature Human Behaviour |author=Munafò, M.R.; Nosek, B.A.; Bishop, D.V.M. et al. |volume=1 |page=0021 |year=2017 |doi=10.1038/s41562-016-0021}}</ref>, RDM has increasingly become a focus for academic libraries. Though offerings vary considerably between institutions, library RDM programs generally emphasize skills training and assisting researchers in complying with data-related policies and mandates<ref name="CoxDevelop17">{{cite journal |title=Developments in research data management in academic libraries: Towards an understanding of research data service maturity |journal=Journal of the Association for Information Science and Technology |author=Cox, A.M.; Kennan, M.A.; Lyon, L. et al. |volume=68 |issue=9 |page=2182-2200 |year=2017 |doi=10.1002/asi.23781}}</ref><ref name="FloresLibraries15">{{cite book |chapter=Libraries and the Research Data Management Landscape |title=The Process of Discovery: The CLIR Postdoctoral Fellowship Program and the Future of the Academy |author=Flores, J.R.; Brodeur, J.J.; Daniels, M.G. et al. |editor=Maclachlan, J.C.; Waraksa, E.A.; Williford, C. |publisher=Council on Library and Information Resources |year=2015 |isbn=9781932326529}}</ref><ref name="TenopirResearch14">{{cite journal |title=Research data management services in academic research libraries and perceptions of librarians |journal=Library & Information Science Research |author=Tenopir, C.; Sandusky, R.J.; Allard, S.; Birch, B. |volume=36 |issue=2 |pages=84-90 |year=2014 |doi=10.1016/j.lisr.2013.11.003}}</ref> Guidance provided to researchers by library-based data service providers often focuses on topics such as data management planning, metadata and documentation, data organization, storage and backup procedures, and long term preservation. Though “best practice” documents written by researchers often cover similar topics, they generally do not reference the work of data service providers. A recent effort to bridge these two perspectives through a survey of data management practices in the field of human brain imaging (neuroimaging) demonstrates that many researchers are unaware of or do not make use of library-based RDM resources. Furthermore, their RDM practices are highly variable, often described using hypothesis or workflow-specific terminology, and rooted in immediate and practical concerns (e.g., “I want to prevent the loss of data.”).<ref name="BorghiData18">{{cite journal |title=Data management and sharing in neuroimaging: Practices and perceptions of MRI researchers |journal=bioRxiv |author=Borghi, J.A.; Van Gulick, A.E. |year=2018 |doi=10.1371/journal.pone.0200562}}</ref> Therefore, for data service providers, crossing this communication gap and effectively engaging with researchers on the topic of RDM requires not only overcoming differences in language, terminology, and priorities between and within different research areas, but also placing related concepts within the context of a researcher’s day-to-day work with data.
A provider of telecommunications service shall ensure that the service is accessible to and usable by individuals with disabilities, if readily achievable.


There are several existing tools that bring together the perspectives of data service providers and researchers to evaluate RDM practices. However, because these tools are often oriented towards data service providers, they have not seen widespread adoption by researchers who may have minimal contact with library-based RDM programs. For example, the Data Curation Profiles toolkit-which consists of a structured interviewed designed to elucidate data-related practices and needs in different academic disciplines-was designed to launch discussions between librarians and researchers and facilitate the development of data services that address the needs of researchers.<ref name="WittContruct09">{{cite journal |title=Constructing Data Curation Profiles |journal=International Journal of Digital Curation |author=Witt, M.; Carlson, J.; Brandt, D.S.; Cragin, M.H. |volume=4 |issue=3 |pages=93-103 |year=2009 |doi=10.2218/ijdc.v4i3.117}}</ref> Other RDM assessment tools draw heavily from the capability maturity model (CMM) framework, which describes practices based on their degree of formality and optimization.<ref name="PaulkCapability93">{{cite journal |title=Capability maturity model, version 1.1 |journal=IEEE Software |author=Paulk, M.C.; Curtis, B.; Chrissis, M.B.; Weber, C.V. |volume=10 |issue=4 |pages=18-27 |year=1993 |doi=10.1109/52.219617}}</ref> A maturity model specific to the management of scientific data characterizes research groups on the basis of how well their procedures related to data acquisition, description, dissemination, and preservation are defined, documented, and generalized.<ref name="CrowstonACapability12">{{cite journal |title=A capability maturity model for scientific data management: Evidence from the literature |journal=Proceedings of the American Society for Information Science and Technology |author=Crowston, K.; Qin, J. |volume=48 |issue=1 |pages=1-9 |year=2012 |doi=10.1002/meet.2011.14504801036}}</ref> The DMVitals tool<ref name="SallansResearch14">{{cite book |chapter=Data management assessment and planning tools |title=Research Data Management: Practical Strategies for Information Professionals |author=Sallans, A.; Lake, S. |editor=Ray, J.M. |publisher=Purdue University Press |year=2014 |isbn=9781557536648}}</ref> combines elements of the Data Curation Profiles and maturity-based tools to systematically assess a researcher’s data management practices and generate customized and actionable recommendations based on institutional and domain standards.
'''(d) Compatibility'''
Whenever the requirements of subsections (b) and (c) are not readily achievable, such a manufacturer or provider shall ensure that the equipment or service is compatible with existing peripheral devices or specialized customer premises equipment commonly used by individuals with disabilities to achieve access, if readily achievable.</blockquote>


This brief review of the current RDM landscape highlights several significant trends:
The term '''disability''' is [https://www.law.cornell.edu/uscode/text/42/12102 defined here]. You can read the full entry, but the basics are:


# Researchers face an evolving array of expectations related to how they manage and share data. Unfortunately, there is a significant communication gap between researchers and library-based data service providers.
<blockquote>'''(1) Disability''' The term “disability” means, with respect to an individual—
# Overcoming this communication gap requires placing RDM in the context of a researcher’s day-to-day work with data and overcoming differences in language, terminology, and priorities between and within different research communities.
:'''(A)''' a physical or mental impairment that substantially limits one or more major life activities of such individual;
# There is currently no user-friendly guide that allows researchers to assess and advance their own data management practices.


The intention of the Support Your Data project is to address these trends by developing materials that frame activities related to research data management so that they can be easily understood and acted upon by researchers. At present, these materials consist of a rubric designed to allow researchers to self assess their own RDM practices over the course of a research project and a complementary set of guides that direct researchers towards RDM-related services at their institution and provide actionable information about how to advance their practices as necessary or desired. To meet the needs of researchers in different institutional and disciplinary contexts, all of these materials have been designed to be easily customizable.
:'''(B)''' a record of such an impairment; or


==Project development==
:'''(C)''' being regarded as having such an impairment (as described in paragraph (3)).</blockquote>
The development process for the Support Your Data project drew upon a large number of sources. An initial point of inspiration was the “HowOpenIsIt?” guide developed by SPARC, PLOS, and the Open Access Scholarly Publishers Association (OASPA).<ref name="SPARCHowOpen">{{cite web |url=https://sparcopen.org/our-work/howopenisit/ |title=HowOpenIsIt? A Guide for Evaluating the Openness of Journals |publisher=New Venture Fund |year=2013}}</ref> The format of this guide, in which a number of topics (e.g., author posting rights, reuse rights) are described on a spectrum from closed to open access, allows for a number of complex and interrelated issues to be presented in a relatively simple and easy to understand manner. This prompted us to consider how to present research data management, a topic sufficiently complex as to be labelled a “wicked problem,”<ref name="AwreResearch15">{{cite journal |title=Research Data Management as a “wicked problem" |journal=Library Review |author=Awre, C.; Baxter, J.; Clifford, B. et al. |volume=64 |issue=4/5 |pages=356-371 |year=2015 |doi=10.1108/LR-04-2015-0043}}</ref> in a similar manner.


A literature search and analysis of existing RDM evaluation tools revealed that the majority were either designed to benchmark RDM services at the institutional level (e.g., the Australian National Data Service's data management framework<ref name="ANDSCreating">{{cite web |url=http://www.ands.org.au/guides/creating-a-data-management-framework |title=Creating a data management framework |publisher=Australian National Data Service |year=2011}}</ref> and the Digital Curation Center's CARDIO effort<ref name="DCC_CARDIO">{{cite web |url=https://cardio.dcc.ac.uk/about/ |title=Collaborative Assessment of Research Data Infrastructure and Objectives (CARDIO) |publisher=Digital Curation Center |year=2013}}</ref>) or intended to foster communication between researchers and library based data service providers.<ref name="SallansResearch14" /><ref name="WittContruct09" /> For this reason, we decided that our yet unnamed project should focus on developing materials for researchers. Working under the assumption that researchers in different institutional and disciplinary contexts might have a range of RDM-related priorities and access to different levels of RDM-related services, we decided at the outset of the development process that our materials should be developed with an eye towards customization.
The term '''readily achievable''' is [https://www.law.cornell.edu/uscode/text/42/12181 defined here]. It is defines as:


One major early difficulty was determining how to describe the research process. While we wanted to draw from the workflow-based organization of visualizations such as the research data lifecycle, we also wanted to avoid presenting the progression of a research project using models or terminology that would be unfamiliar or unappealing to researchers. After conducting an informal survey of what words researchers associate with given activities (e.g., “What term(s) do you use to describe the stage of your research that involves acquiring, accumulating, or measuring data?”) and examining related work on the topic (e.g., Mattern ''et al.'' 2015<ref name="MatternUsing15">{{cite journal |title=Using participatory design and visual narrative inquiry to investigate researchers’ data challenges and recommendations for library research data services |journal=Program: electronic library and information systems |author=Mattern, E.; Jeng, W.; He, D. |volume=49 |issue=4 |pages=408-423 |year=2015 |doi=10.1108/PROG-01-2015-0012}}</ref>) we decided to focus on describing RDM-related practices rather than project stages. Even so, terminology proved to be a significant problem as we quickly determined that phrases such “data management planning” and “data sharing” had significantly different meanings to different audiences. Our efforts to reduce jargon would continue throughout the development process.
<blockquote>'''(9) Readily achievable''' The term “readily achievable” means easily accomplishable and able to be carried out without much difficulty or expense. In determining whether an action is readily achievable, factors to be considered include—


As with other RDM evaluation tools, we adopted elements of the capability maturity model framework to describe different data management-related activities on a continuum from “ad hoc” to “refined and optimized.” This early conception of an “RDM Maturity Guide” was described in early blog posts intended to elicit feedback from members of the the data services and research communities. However, as the project progressed, we moved away from explicitly referencing the concept of practice maturity. Informal feedback received during the development of a parallel project, in which researchers were asked to provide quantitative RDM maturity ratings for themselves and their field as a whole<ref name="BorghiData18" />, revealed that the concept needed constant clarification and that researchers were resistant to the connotation that their practices could be considered “immature.
:'''(A)''' the nature and cost of the action needed under this chapter;
:'''(B)''' the overall financial resources of the facility or facilities involved in the action; the number of persons employed at such facility; the effect on expenses and resources, or the impact otherwise of such action upon the operation of the facility;
:'''(C)''' the overall financial resources of the covered entity; the overall size of the business of a covered entity with respect to the number of its employees; the number, type, and location of its facilities; and
:'''(D)''' the type of operation or operations of the covered entity, including the composition, structure, and functions of the workforce of such entity; the geographic separateness, administrative or fiscal relationship of the facility or facilities in question to the covered entity.</blockquote>


The general structure of what would become the Support Your Data rubric was therefore refined to include a series of RDM-related activities described at different levels of definition and optimization. Because the rubric was to be designed to allow researchers to self-assess the current state of their RDM practices, we quickly decided that the rubric should be complemented by a series of short guides designed to provide information about how to advances practices as necessary or desired. In a series of biweekly meetings, we then set out to draft content for these materials. Feedback from the broader community was sought throughout this process through additional blog posts and presentations at research data-focused conferences (e.g., see Borghi ''et al.'' 2017<ref name="BorghiDeveloping17">{{cite web |url=https://zenodo.org/record/1213384 |title=Developing a Data Management Guide for Researchers |author=Borghi, J.A.; Abrams, S.; Chodacki, J. et al. |work=Zenodo |date=22 September 2017 |doi=10.5281/zenodo.1213384}}</ref> and Borghi ''et al.'' 2018<ref name="BorghiSupport18">{{cite web |url=https://zenodo.org/record/1204885 |title=Support Your Data: A Data Management Guide for Researchers |author=Borghi, J.A.; Abrams, S.; Lowenberg, D. et al. |work=Zenodo |date=21 March 2018 |doi=10.5281/zenodo.1204885}}</ref>)
===2. Rehabilitation Act of 1973, Section 508, amended ([https://www.law.cornell.edu/uscode/text/29/794d 29 U.S.C. 794d] - Electronic and information technology)===


Initially, development of the content for the rubric and the guides progressed in parallel. Informed by informal surveys of researchers and data service providers (e.g. “What activities do you consider part of ‘planning for data’?”), we reviewed draft materials, worked to clarify language, and added relevant information as necessary. Though the activities described in the rows of the rubric (and expanded upon further in the guides) remained largely consistent throughout the development process, the earliest iterations of the rubric did not use use set labels to describe a researcher’s practices related to each activity. This was intentional, as we wanted to resist quantification of a researcher’s practices into a score of their RDM maturity. However, after an initial round of revisions, we determined that the rubric was becoming unbalanced. The lack of labels meant that different activities were being described at different levels of specificity which made interpretation difficult, thus defeating the entire purpose of the project.
There's a government website dedicated to Section 508: [https://www.section508.gov/ https://www.section508.gov/] The related laws and polices can be [https://www.section508.gov/manage/laws-and-policies/ found here]. The intro states (italics emphasis mine):


In response, we refined the structure of the rubric further so that a researcher’s RDM-related activities were described using one of four labels (see next section). After taking care that these labels were descriptive and not evaluative, we then completed a draft version of the entire rubric. We decided to use declarative statements to describe each RDM-related activity under each label in order to maximize the degree to which a researcher would identify a description with their own practices. We then proceeded to refine the content and structure of the guides. The materials presented in the next section are the result of this most recent round of revision.
<blockquote>In 1998, Congress amended the Rehabilitation Act of 1973 to require Federal agencies to make their electronic and information technology (EIT) accessible to people with disabilities. The law (29 U.S.C § 794 (d)) ''applies to all Federal agencies when they develop, procure, maintain, or use electronic and information technology''. Under Section 508, agencies must give ''disabled employees and members of the public'' access to information comparable to the access available to others.


==The support your data materials==
The [https://www.access-board.gov/ U.S. Access Board] is responsible for developing Information and Communication Technology (ICT) accessibility ''standards'' to ''incorporate into regulations that govern Federal procurement practices.'' On January 18, 2017, the Access Board issued a final rule that updated accessibility requirements covered by Section 508, and refreshed guidelines for telecommunications equipment subject to Section 255 of the Communications Act. The final rule went into effect on January 18, 2018.
At present, the Support Your Data materials consist of a rubric designed to allow researchers to self assess their own RDM practices and a complementary series of one-page guides intended to provide researchers access to RDM-related expertise (including local RDM-related resources) and advance practices as necessary or desired. All of these materials are intended to be customizable in order to meet the needs of researchers in different institutional or disciplinary contexts.


The aim of the Support Your Data project is to be descriptive rather than prescriptive. Neither the rubric nor the guides assumes that every researcher will want, need, or be able to achieve the same level data management practices. Rather, the intent of these materials is to help researchers understand where they are in regards to RDM and, when appropriate, how to get to where they want or need to be.
The rule updated and reorganized the Section 508 Standards and Section 255 Guidelines ''in response to market trends and innovations in technology.'' The refresh also harmonized these requirements with other guidelines and standards both in the U.S. and abroad, including standards issued by the European Commission, ''and with the World Wide Web Consortium (W3C) Web Content Accessibility Guidelines (WCAG 2.0), a globally recognized voluntary consensus standard for web content and ICT.''</blockquote>


==RDM rubric==
In discussing ICT, the U.S. Access Board [https://www.access-board.gov/ict/#b-summary-of-key-provisions summarized the key provisions] as such:
A schematic version of RDM rubric is shown in Table 1. Different RDM-related activities occurring over the course of a research project are represented in separate rows. Though the order from top to bottom loosely follows the progression of a research project, it is very likely that these activities will occur in a different order or simultaneously in a researcher's day-to-day work with data. The six activities described in the rubric (planning, organizing, saving, preparing, analyzing, and sharing) are intentionally general in order to make the rubric applicable to as wide a population as possible. Future versions of the rubric, adapted to specific disciplinary or institutional contexts, could incorporate greater, fewer, or altogether different activities.


{|
<blockquote>The Revised 508 Standards and 255 Guidelines replace the current product-based regulatory approach with an approach based on ICT functions. The revised technical requirements, which are organized along the lines of ICT functionality, provide requirements to ensure that covered hardware, software, electronic content, and support documentation and services are accessible to people with disabilities. In addition, the revised requirements include functional performance criteria, which are outcome-based provisions that apply in two limited instances: when the technical requirements do not address one or more features of ICT or when evaluation of an alternative design or technology is needed under equivalent facilitation.</blockquote>
| STYLE="vertical-align:top;"|
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" width="80%"
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;" colspan="5"|'''Table 1.''' The Support Your Data RDM rubric. The language used throughout the rubric is intended to describe RDM-related activities such as data management planning, organizing data, saving data, preparing data, analyzing data, and sharing data in a researcher-friendly fashion. A formatted version is available as Suppl. material 1.
|-
|-
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Ad Hoc
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|One-Time
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Active and Informative
  ! style="background-color:#e2e2e2; padding-left:10px; padding-right:10px;"|Optimized for Re-Use
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Planning your project
  | style="background-color:white; padding-left:10px; padding-right:10px;"|When it comes to my data, I have a "way of doing things" but no standard or documented plans.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I create some formal plans about how I will manage my data at the start of a project, but I generally don't refer back to them.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I develop detailed plans about how I will manage my data that I actively revisit and revise over the course of a project.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have created plans for managing my data that are designed to streamline its future use by myself or others.
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Organizing your data
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I don’t follow a consistent approach for keeping my data organized, so it often takes time to find things.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have an approach for organizing my data, but I only put it into action after my project is complete.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have an approach for organizing my data that I implement prospectively, but it not necessarily standardized.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I organize my data so that others can navigate, understand, and use it without me being present.
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Saving and backing up your data
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I decide what data is important while I am working on it and typically save it in a single location.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I know what data needs to be saved and I back it up after I'm done working on it to reduce the risk of loss.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have a system for regularly saving important data while I am working on it. I have multiple backups.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I save my data in a manner and location designed maximize opportunities for re-use by myself and others.
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Getting your data ready for analysis
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I don't have a standardized or well documented process for preparing my data for analysis.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have thought about how I will need to prepare my data, but I handle each case in a different manner.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|My process for preparing data is standardized and well documented.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I prepare my data in such a way as to facilitate use by both myself and others in the future.
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Analyzing your data and handling the outputs
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I often have to redo my analyses or examine their products to determine what procedures or parameters were applied.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|After I finish my analysis, I document the specific parameters, procedures, and protocols applied.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I regularly document the specifics of both my analysis workflow and decision making process while I am analyzing my data.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I have ensured that the specifics of my analysis workflow and decision making process can be understood and put into action by others.
|-
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Sharing and publishing your data
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I share the results of my research, but generally I do not share the underlying data.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I share my data only when I'm required to do so or in response to direct requests from other researchers.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|I regularly share the data that underlies my results and conclusions in a form that enables use by others.
  | style="background-color:white; padding-left:10px; padding-right:10px;"|Because of my excellent data management practices, I am able to efficiently share my data whenever I need to with whomever I need to.
|-
|}
|}


Proceeding left to right, a series of declarative statements describe each activity in terms of how well they are designed to foster access to and use of data in the future. The four levels, “ad hoc,” “one-time,” “active and informative,” and “optimized for re-use,” are intended to be descriptive not prescriptive.
The full (lengthy) information about the ICT Accessibility 508 Standards and 255 Guidelines is found here: [https://www.access-board.gov/ict/ https://www.access-board.gov/ict/]


* '''Ad hoc''' - Refers to circumstances in which practices are neither standardized or documented. Every time a researcher has to manage their data they have to design new practices and procedures from scratch.
The specific software requirements that LabLynx will likely need to consider under Section 508 appear to be found in [https://www.access-board.gov/ict/#chapter-5-software Chapter 5: Software] and [https://www.access-board.gov/ict/#chapter-6-support-documentation-and-services Chapter 6: Support Documentation and Services]. (If for some reason LLX is in the hardware domain, they'll want to also consider[https://www.access-board.gov/ict/#chapter-4-hardware Chapter 4: Hardware] If you're curious about the underlying standards, you can find them in [https://www.access-board.gov/ict/#chapter-7-%C2%A0-referenced-standards Chapter 7: Referenced Standards].


* '''One time''' - Refers to circumstances in which data management occurs only when it is necessary, such as in direct response to a mandate from a funder or publisher. Practices or procedures implemented at one phase of a project are not designed with later phases in mind.
Finally, the Section 508 government website has a full Design & Develop section that may be applicable to development process: [https://www.section508.gov/develop/ https://www.section508.gov/develop/]


* '''Active and informative''' - Refers to circumstances in which data management is a regular part of the research process. Practices and procedures are standardized, well documented, and well integrated with those implemented at other phases.
==Additional information==


* '''Optimized for re-use''' - Refers to circumstances in which data all management activities are designed to facilitate the re-use of data in the future.
1. The Section 508 website and its glossary mention LIMS under "[https://www.section508.gov/art/glossary/#S scientific instrument]," though only secondarily. At the end: "If a scientific instrument is integrated with a computer or a monitor, the computer (and associated operating system) and the monitor would be separate EIT deliverables, requiring their own Government Product Accessibility Templates (GPAT). If the computer included application software, this software would be another EIT deliverable requiring its own GPAT."
2. It appears some software can qualify for "a legally-defined Exception (Back Office)," as found in this example with STARLIMS and the VA: [https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=7502 https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=7502]


It should be noted that “re-use” in the context of the Support Your Data project is not necessarily meant as an endorsement of data sharing or other open science practices but is representative of the close link between effective sharing and effective research data management. It is very likely that the person who will need to examine or re-use a given dataset will be the researcher who collected or analyzed it in the first place.
3. Some additional posts and guides that may be revealing:
 
* [https://www.levelaccess.com/how-do-i-determine-if-my-web-site-or-application-is-section-508-compliant/ How do I determine if my website or application is Section 508 compliant?]
==One-page guides==
* [https://ftp.cdc.gov/pub/Software/RegistryPlus/508%20Compliance/508softwareandos.doc GSA Guide For Making Software Applications and Operating Systems Accessible] (.doc file; NOTE: No date, so not sure if incorporates amended material, so be careful)
Prelimary versions of the guides associated with each row of the RDM rubric are available as Suppl. materials 2, 3, 4, 5, 6, and 7. Designed to be easily customizable to fit the terminology, practices, and services associated with different disciplinary and institutional communities, the guides all follow a similar structure.
* [https://www.dhs.gov/publication/dhs-section-508-compliance-test-processes DHS Section 508 Compliance Test Processes]
 
* '''Abstract''' - A brief summary of the contents of the guide.
* '''What does it mean?''' - Provides an operational definition of the activity covered by the guide. For some guides (Planning, Preparing), this consists of a sentence or two describing the activity. For others (e.g. Saving, Preparing, Analyzing, Sharing) this involves a more detailed breakdown of what each activity involves in practice.
* '''Requirements and how to meet them''' - Provides a brief summary of how to meet expectations or mandates related to each activity. Because data-related requirements and services are highly discipline and institionally specific, the contents of these sections are designed to be easily customizable.
* '''Things to think about''' - Contains notes and recommendations that do not fit into the other sections.
 
Both the rubric and the guides are intended for easy customization to reflect the terminology, tools, best practices, and services specific to different disciplinary and institutional communities. In the template guides, some suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). Discipline-specific versions may incorporate the jargon, workflow, standards, and priorities of researchers working in a particular domain (e.g., neuroscience<ref name="NicholsBest17">{{cite journal |title=Best practices in data analysis and sharing in neuroimaging using MRI |journal=Nature Neuroscience |author=Nichols. T.E.; Das, S.; Eickhoff, S.B. et al. |volume=20 |pages=299–303 |year=2017 |doi=10.1038/nn.4500}}</ref>). Institution-specific versions may also incorporate links to available data management, curation, and preservation tools and services.
 
==Using the Support Your Data materials==
We envision several use cases for the Support Your Data materials. The most likely is one in which these materials are used to facilitate discussion between an individual researcher or research group and a data service provider. In such a case, the researcher or research group can use the RDM rubric to identify the difference between where they are in regards to RDM versus where they want or need to be and then a data service provider can use the guides, customized to highlight available services and tools, to provide information about how to move forward. Another probable use case is one in which a particular research community uses these materials as part of a broader effort to improve data management (including data sharing) related practices. In this case, the organization and content of both the RDM rubric and the guides can be customized, with the assistance of data service providers, to include community-specific activities, requirements, and terminology. Though we were careful to ensure that our materials are merely descriptive, such customized versions could be more prescriptive in adhering to institutional or discipline-specific norms or policies.
 
Though helping researchers respond to evolving expectations related to the management and sharing of their data was a major driving force behind the project, the Support Your Data materials, at least in their current iteration, are not designed to increase compliance with specific policies or requirements. For example, though a researcher using these materials would be directed to local RDM services and tools (e.g., a local DMPTool instance) related to the creation of data management plans (DMPs), neither the rubric nor the “planning for data” guide give specific guidance on how to comply with the DMP requirements of different funding agencies. However, in helping researchers assess and advance their data management practices, the Support Your Data materials may indirectly help them comply more effectively with data-related requirements throughout the lifecycle of a research project.
 
==Next steps==
Now that we have a complete set of draft materials, the next step of the Support Your Data project is to focus on design and adoption. Moving forward, we will work with internal and external partners on the visual presentation of the materials and to develop pamphlets, postcards, and other collateral. As has been the case throughout the project, we will also continue to invite feedback and explore partnerships with stakeholders interested in developing customized materials.
 
==Supplementary material==
* [https://riojournal.com/article/download/suppl/4348984/ Suppl. material 1]: A formatted version of the Support Your Data RDM rubric (.odp file)
* [https://riojournal.com/article/download/suppl/4349005/ Suppl. material 2]: A draft guide that corresponds with the "Planning your project" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
* [https://riojournal.com/article/download/suppl/4349007/ Suppl. material 3]: A draft guide that corresponds with the "Organizing your data" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
* [https://riojournal.com/article/download/suppl/4349008/ Suppl. material 4]: A draft guide that corresponds with the "Saving and backing up your data" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
* [https://riojournal.com/article/download/suppl/4349037/ Suppl. material 5]: A draft guide that corresponds with the "Getting your data ready for analysis" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
* [https://riojournal.com/article/download/suppl/4349038/ Suppl. material 6]: A draft guide that corresponds with the "Analyzing your data and handling the outputs" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
* [https://riojournal.com/article/download/suppl/4349039/ Suppl. material 7]: A draft guide that corresponds with the "Sharing and publishing your data" row of the RDM rubric. Suggested points of customization are highlighted in yellow (discipline-specific) and red (institution-specific). (.odt file)
 
==Acknowledgements==
===Hosting institution===
UC Curation Center, California Digital Library
 
===Author contributions===
JB drafted the manuscript and lead the development of the materials. SA, DL, SS, and JC co-developed the materials and reviewed the manuscript.
 
===Conflicts of interest===
The authors declare no conflicts of interest.
 
==Footnotes==
{{reflist|group=lower-alpha}}
 
==References==
{{Reflist|colwidth=30em}}
 
==Notes==
This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. Footnotes were originally numbered but have been converted to lowercase alpha for this version. The original article lists references alphabetically, but this version—by design—lists them in order of appearance. 
 
<!--Place all category tags here-->
[[Category:LIMSwiki journal articles (added in 2018)‎]]
[[Category:LIMSwiki journal articles (all)‎]]
[[Category:LIMSwiki journal articles on data management and sharing]]
[[Category:LIMSwiki journal articles on open data]]
[[Category:LIMSwiki journal articles on research]]

Latest revision as of 21:23, 28 February 2022

The laws themselves

1. Federal Telecommunications Act of 1996, Section 255 (47 U.S.C. § 255 - Access by persons with disabilities)

(b) Manufacturing

A manufacturer of telecommunications equipment or customer premises equipment shall ensure that the equipment is designed, developed, and fabricated to be accessible to and usable by individuals with disabilities, if readily achievable.

(c) Telecommunications services

A provider of telecommunications service shall ensure that the service is accessible to and usable by individuals with disabilities, if readily achievable.

(d) Compatibility

Whenever the requirements of subsections (b) and (c) are not readily achievable, such a manufacturer or provider shall ensure that the equipment or service is compatible with existing peripheral devices or specialized customer premises equipment commonly used by individuals with disabilities to achieve access, if readily achievable.

The term disability is defined here. You can read the full entry, but the basics are:

(1) Disability The term “disability” means, with respect to an individual—

(A) a physical or mental impairment that substantially limits one or more major life activities of such individual;
(B) a record of such an impairment; or
(C) being regarded as having such an impairment (as described in paragraph (3)).

The term readily achievable is defined here. It is defines as:

(9) Readily achievable The term “readily achievable” means easily accomplishable and able to be carried out without much difficulty or expense. In determining whether an action is readily achievable, factors to be considered include—

(A) the nature and cost of the action needed under this chapter;
(B) the overall financial resources of the facility or facilities involved in the action; the number of persons employed at such facility; the effect on expenses and resources, or the impact otherwise of such action upon the operation of the facility;
(C) the overall financial resources of the covered entity; the overall size of the business of a covered entity with respect to the number of its employees; the number, type, and location of its facilities; and
(D) the type of operation or operations of the covered entity, including the composition, structure, and functions of the workforce of such entity; the geographic separateness, administrative or fiscal relationship of the facility or facilities in question to the covered entity.

2. Rehabilitation Act of 1973, Section 508, amended (29 U.S.C. 794d - Electronic and information technology)

There's a government website dedicated to Section 508: https://www.section508.gov/ The related laws and polices can be found here. The intro states (italics emphasis mine):

In 1998, Congress amended the Rehabilitation Act of 1973 to require Federal agencies to make their electronic and information technology (EIT) accessible to people with disabilities. The law (29 U.S.C § 794 (d)) applies to all Federal agencies when they develop, procure, maintain, or use electronic and information technology. Under Section 508, agencies must give disabled employees and members of the public access to information comparable to the access available to others.

The U.S. Access Board is responsible for developing Information and Communication Technology (ICT) accessibility standards to incorporate into regulations that govern Federal procurement practices. On January 18, 2017, the Access Board issued a final rule that updated accessibility requirements covered by Section 508, and refreshed guidelines for telecommunications equipment subject to Section 255 of the Communications Act. The final rule went into effect on January 18, 2018.

The rule updated and reorganized the Section 508 Standards and Section 255 Guidelines in response to market trends and innovations in technology. The refresh also harmonized these requirements with other guidelines and standards both in the U.S. and abroad, including standards issued by the European Commission, and with the World Wide Web Consortium (W3C) Web Content Accessibility Guidelines (WCAG 2.0), a globally recognized voluntary consensus standard for web content and ICT.

In discussing ICT, the U.S. Access Board summarized the key provisions as such:

The Revised 508 Standards and 255 Guidelines replace the current product-based regulatory approach with an approach based on ICT functions. The revised technical requirements, which are organized along the lines of ICT functionality, provide requirements to ensure that covered hardware, software, electronic content, and support documentation and services are accessible to people with disabilities. In addition, the revised requirements include functional performance criteria, which are outcome-based provisions that apply in two limited instances: when the technical requirements do not address one or more features of ICT or when evaluation of an alternative design or technology is needed under equivalent facilitation.

The full (lengthy) information about the ICT Accessibility 508 Standards and 255 Guidelines is found here: https://www.access-board.gov/ict/

The specific software requirements that LabLynx will likely need to consider under Section 508 appear to be found in Chapter 5: Software and Chapter 6: Support Documentation and Services. (If for some reason LLX is in the hardware domain, they'll want to also considerChapter 4: Hardware If you're curious about the underlying standards, you can find them in Chapter 7: Referenced Standards.

Finally, the Section 508 government website has a full Design & Develop section that may be applicable to development process: https://www.section508.gov/develop/

Additional information

1. The Section 508 website and its glossary mention LIMS under "scientific instrument," though only secondarily. At the end: "If a scientific instrument is integrated with a computer or a monitor, the computer (and associated operating system) and the monitor would be separate EIT deliverables, requiring their own Government Product Accessibility Templates (GPAT). If the computer included application software, this software would be another EIT deliverable requiring its own GPAT."

2. It appears some software can qualify for "a legally-defined Exception (Back Office)," as found in this example with STARLIMS and the VA: https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=7502

3. Some additional posts and guides that may be revealing: