Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
 
(246 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig4 SprengholzQuantMethSci2018 14-2.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Soto-Perdomo SoftwareX2023 24.jpg|240px]]</div>
'''"[[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system]]"'''
'''"[[Journal:OptiGUI DataCollector: A graphical user interface for automating the data collecting process in optical and photonics labs|OptiGUI DataCollector: A graphical user interface for automating the data collecting process in optical and photonics labs]]"'''
 
OptiGUI DataCollector is a Python 3.8-based graphical user interface (GUI) that facilitates automated data collection in optics and photonics research and development equipment. It provides an intuitive and easy-to-use platform for controlling a wide range of optical instruments, including [[spectrometer]]s and lasers. OptiGUI DataCollector is a flexible and modular framework that enables simple integration with different types of devices. It simplifies experimental workflow and reduces human error by automating parameter control, data acquisition, and [[Data analysis|analysis]]. OptiGUI DataCollector is currently focused on optical mode conversion utilizing fiber optic technologies ... ('''[[Journal:OptiGUI DataCollector: A graphical user interface for automating the data collecting process in optical and photonics labs|Full article...]]''')<br />


The reproduction of findings from psychological research has been proven difficult. Abstract description of the data analysis steps performed by researchers is one of the main reasons why reproducing or even understanding published findings is so difficult. With the introduction of [[Jupyter Notebook]], a new tool for the organization of both static and dynamic [[information]] became available. The software allows blending explanatory content like written text or images with code for preprocessing and analyzing scientific data. Thus, Jupyter helps document the whole research process from ideation over data analysis to the interpretation of results. This fosters both collaboration and scientific quality by helping researchers to organize their work. This tutorial is an introduction to Jupyter. It explains how to set up and use the notebook system. While introducing its key features, the advantages of using Jupyter Notebook for psychological research become obvious. ('''[[Journal:Welcome to Jupyter: Improving collaboration and reproduction in psychological research by using a notebook system|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system|Developing a file system structure to solve healthcare big data storage and archiving problems using a distributed file system]]
{{flowlist |
: ▪ [[Journal:DataCare: Big data analytics solution for intelligent healthcare management|DataCare: Big data analytics solution for intelligent healthcare management]]
* [[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]
: ▪ [[Journal:Application of text analytics to extract and analyze material–application pairs from a large scientific corpus|Application of text analytics to extract and analyze material–application pairs from a large scientific corpus]]
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
}}

Latest revision as of 15:05, 17 June 2024

Fig1 Soto-Perdomo SoftwareX2023 24.jpg

"OptiGUI DataCollector: A graphical user interface for automating the data collecting process in optical and photonics labs"

OptiGUI DataCollector is a Python 3.8-based graphical user interface (GUI) that facilitates automated data collection in optics and photonics research and development equipment. It provides an intuitive and easy-to-use platform for controlling a wide range of optical instruments, including spectrometers and lasers. OptiGUI DataCollector is a flexible and modular framework that enables simple integration with different types of devices. It simplifies experimental workflow and reduces human error by automating parameter control, data acquisition, and analysis. OptiGUI DataCollector is currently focused on optical mode conversion utilizing fiber optic technologies ... (Full article...)

Recently featured: