|
|
(284 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| ==A framework for the laboratories in our lives== | | ==This is demo code demoing math== |
| Below is a diagrammatic expression of one method of organizing laboratories of the world. The idea behind the framework is that you could name a specific laboratory and be able to put it somewhere within the framework. For example:
| |
|
| |
|
| * The U.S. Federal Bureau of Investigation's mobile forensics laboratory<ref name="StephensInside15">{{cite web |url=http://www.kctv5.com/story/28266161/inside-look-at-fbis-new-mobile-forensics-lab |title=Inside look at FBI's new mobile forensics lab |author=Stephens, B. |work=KCTV5 News |publisher=Gannaway Web Holdings, LLC |date=04 March 2015 |accessdate=29 March 2017}}</ref> would fall under Government > Public > Compliance and Legal > Wet (or Dry) > Mobile.
| | As a typical example, from a [[calibration plot]] following a [[linear equation]] taken here as the simplest possible model: |
|
| |
|
| * An engineering design laboratory based within a for-profit car manufacturing company would fall under Private > Internal Customer > Research / Design > Dry > Fixed.
| | : <math>f(x) = ax + b </math> |
|
| |
|
| * A chemistry laboratory housed in a secondary school in Germany would fall under Academic > Teaching > Secondary > Wet > Fixed.
| | where, <math>f(x)</math> corresponds to the signal measured (e.g. voltage, luminescence, energy, etc.) |
| | |
| The original inspiration for this chart came from Jain and Rao's attempt to diagram Indian diagnostic laboratories in 2015.<ref name="JainMedical15">{{cite journal |title=Medical diagnostic laboratories provisioning of services in India |journal=CHRISMED Journal of Health and Research |author=Jain, R.; Rao, B. |volume=2 |issue=1 |pages=19–31 |year=2015 |doi=10.4103/2348-3334.149340}}</ref> While their diagram focused entirely on the clinical sphere of laboratories, it was easy to envision expanding upon their work to express laboratories of all types. Additional inspiration came from KlingStubbins architecture textbook ''Sustainable Design of Research Laboratories: Planning, Design, and Operation''<ref name="KlingstubbinsSustainable10">{{cite book |title=Sustainable Design of Research Laboratories: Planning, Design, and Operation |author=KlingStubbins |publisher=John Wiley & Sons |year=2010 |pages=17–18 |isbn=9780470915967}}</ref>, which lists several methods for organizing types of laboratories; Daniel D. Watch's ''Building Type Basics for Research Laboratories''<ref name="WatchBuilding01">{{cite book |chapter=Chapter 2: Laboratory Types |title=Building Type Basics for Research Laboratories |author=Watch, D.D. |publisher=John Wiley & Sons |year=2001 |pages=37–99 |isbn=9780471217572}}</ref>; and Walter Hain's ''Laboratories: A Briefing and Design Guide''.<ref name="HainLab03">{{cite book |title=Laboratories: A Briefing and Design Guide |author=Hain, W. |publisher=Taylor & Francis |year=2003 |pages=2–5 |isbn=9781135822941}}</ref>
| |
| | |
| The benefit of this diagrammatic approach — with client type at its base — becomes more apparent when we start considering the other two methods we could use to categorize laboratories, as described by KlingStubbins ''et al.'': by science and by function
| |
| | |
| [[File:Laboratory types diagram v2.0.png|1400px]]
| |
| | |
| ==References==
| |
| {{Reflist|colwidth=30em}}
| |
| | |
| <!--Place all category tags here-->
| |
This is demo code demoing math
As a typical example, from a calibration plot following a linear equation taken here as the simplest possible model:
where, corresponds to the signal measured (e.g. voltage, luminescence, energy, etc.)