Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text)
(103 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Mrazek Diagnostics21 11-7.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
'''"[[Journal:Laboratory demand management strategies: An overview|Laboratory demand management strategies: An overview]]"'''
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''
 
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />


Inappropriate [[laboratory]] test selection in the form of overutilization as well as underutilization, frequently occurs despite available guidelines. There is broad approval among laboratory specialists and clinicians that [[demand management]] (DM) strategies are useful tools to avoid this issue. Most of these tools are based on automated algorithms or other types of [[machine learning]]. This review summarizes the available DM strategies that may be adopted to local settings. We believe that [[artificial intelligence]] (AI) may help to further improve these available tools. ('''[[Journal:Laboratory demand management strategies: An overview|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:A scoping review of integrated blockchain-cloud architecture for healthcare: Applications, challenges, and solutions|A scoping review of integrated blockchain-cloud architecture for healthcare: Applications, challenges, and solutions]]
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Laboratory information management system for the biosafety laboratory: Safety and efficiency|Laboratory information management system for the biosafety laboratory: Safety and efficiency]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Use of middleware data to dissect and optimize hematology autoverification|Use of middleware data to dissect and optimize hematology autoverification]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}
}}

Revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: