Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text)
(108 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Gonzalez-Granadillo Sensors21 21-16.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
'''"[[Journal:Automated cyber and privacy risk management toolkit|Automated cyber and privacy risk management toolkit]]"'''
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''
 
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />


Addressing [[Cybersecurity|cyber]] and [[Information privacy|privacy]] risks has never been more critical for organizations. While a number of [[risk assessment]] methodologies and software tools are available, it is most often the case that one must, at least, integrate them into a holistic approach that combines several appropriate risk sources as input to risk mitigation tools. In addition, cyber risk assessment primarily investigates cyber risks as the consequence of vulnerabilities and threats that threaten assets of the investigated infrastructure. In fact, cyber risk assessment is decoupled from privacy impact assessment, which aims to detect privacy-specific threats and assess the degree of compliance with data protection legislation. Furthermore, a privacy impact assessment (PIA) is conducted in a proactive manner during the design phase of a system, combining processing activities and their inter-dependencies with assets, vulnerabilities, real-time threats and personally identifiable information (PII) that may occur during the dynamic lifecycle of systems. ('''[[Journal:Automated cyber and privacy risk management toolkit|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:Design of generalized search interfaces for health informatics|Design of generalized search interfaces for health informatics]]
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Cybersecurity and privacy risk assessment of point-of-care systems in healthcare: A use case approach|Cybersecurity and privacy risk assessment of point-of-care systems in healthcare: A use case approach]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Fostering reproducibility, reusability, and technology transfer in health informatics|Fostering reproducibility, reusability, and technology transfer in health informatics]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}
}}

Revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: