Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text)
(208 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Tab2 Al-Jefri FrontInMedicine2018 5.jpg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
'''"[[Journal:What Is health information quality? Ethical dimension and perception by users|What Is health information quality? Ethical dimension and perception by users]]"'''
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''
 
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />


The popularity of seeking health [[information]] online makes information quality (IQ) a public health issue. The present study aims at building a theoretical framework of health information quality (HIQ) that can be applied to websites and defines which IQ criteria are important for a website to be trustworthy and meet users' expectations. We have identified a list of HIQ criteria from existing tools and assessment criteria and elaborated them into a questionnaire that was promoted via social media and, mainly, the university. Responses (329) were used to rank the different criteria for their importance in trusting a website and to identify patterns of criteria using hierarchical cluster analysis. HIQ criteria were organized in five dimensions based on previous theoretical frameworks, as well as on how they cluster together in the questionnaire response. We could identify a top-ranking dimension (scientific completeness) that describes what the user is expecting to know from the websites (in particular: description of symptoms, treatments, side effects). ('''[[Journal:What Is health information quality? Ethical dimension and perception by users|Full article...]]''')<br />
<br />
''Recently featured'':
''Recently featured'':
: ▪ [[Journal:SCADA system testbed for cybersecurity research using machine learning approach|SCADA system testbed for cybersecurity research using machine learning approach]]
{{flowlist |
: ▪ [[Journal:Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data|Semantics for an integrative and immersive pipeline combining visualization and analysis of molecular data]]
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
: ▪ [[Journal:A view of programming scalable data analysis: From clouds to exascale|A view of programming scalable data analysis: From clouds to exascale]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}

Revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: