Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
(469 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:US Navy 091001-N-6326B-090 Lyn A. Boulanger, a Naval Medical Center San Diego occupational therapist, assists Marine Corps Staff Sgt. Jesse A. Cottle, a bilateral amputee, while he practices swimming during endurance training.jpg|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
A '''[[comprehensive outpatient rehabilitation facility]]''' ('''CORF''') is a non-residential facility established and operated solely to provide diagnostic, therapeutic, and restorative services to outpatients at a single, fixed location under the order and supervision of a physician. Loosely described as "follow-up medical rehabilitation" by the World Health Organization (WHO), the services offered by a "CORF" — a primarily U.S.-based descriptor — may also be found in "specialized rehabilitation wards or hospitals; rehabilitation centres; institutions such as residential mental and nursing homes, respite care centres, hospices, prisons, residential educational institutions, and military residential settings; or single or multiprofessional practices (office or clinic)" in the global health community.
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''


The U.S. [[Centers for Medicare and Medicaid Services]] (CMS) defines a CORF as "a nonresidential facility that is established and operated exclusively for the purpose of providing diagnostic, therapeutic, and restorative services to outpatients for the rehabilitation of injured, disabled, or sick persons, at a single fixed location, by or under the supervision of a physician." ('''[[Comprehensive outpatient rehabilitation facility|Full article...]]''')<br />
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />
<br />
 
''Recently featured'': [[National Institutes of Health]], [[Laboratory information system]], [[Denuder]]
''Recently featured'':
{{flowlist |
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}

Revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: