Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text)
(481 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:600px-International Electrotechnical Commission Logo.svg.png|160px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig2 Berezin PLoSCompBio23 19-12.png|240px]]</div>
The '''[[International Electrotechnical Commission]]''' ('''IEC''') is a non-profit, non-governmental international standards organization that prepares and publishes international standards for many electrical devices, electronics, and other electrotechnology. IEC standards cover a vast range of technologies from power generation, transmission, and distribution to home appliances and office equipment, semiconductors, fibre optics, batteries, solar energy systems, marine energy systems, and nanotechnology. The IEC also manages three global conformity assessment systems that certify whether equipment, systems, or components conform to its international standards. IEC's membership comprises some 10,000 electrical and electronics experts from industry, government, academia, test labs, and others with an interest in the subject.
'''"[[Journal:Ten simple rules for managing laboratory information|Ten simple rules for managing laboratory information]]"'''


The IEC charter embraces all electrotechnologies, including energy production and distribution systems, electronics, magnetic and electromagnetic devices, electroacoustic equipment, multimedia tools, telecommunication systems, and medical technology. The IEC also performs research and investigation into associated general disciplines such as terminology and symbols, electromagnetic compatibility (by its Advisory Committee on Electromagnetic Compatibility, ACEC), measurement and performance, research and development, safety, and the environmental sciences. ('''[[International Electrotechnical Commission|Full article...]]''')<br />
[[Information]] is the cornerstone of [[research]], from experimental data/[[metadata]] and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging [[laboratory information management system]]s (LIMS) to transform this large information load into useful scientific findings. The development of [[mathematical model]]s that can predict the properties of biological systems is the holy grail of [[computational biology]]. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... ('''[[Journal:Ten simple rules for managing laboratory information|Full article...]]''')<br />
<br />
 
''Recently featured'': [[Physician office laboratory]], [[United States Department of Health and Human Services]], [[Bioimage informatics]]
''Recently featured'':
{{flowlist |
* [[Journal:Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology|Hierarchical AI enables global interpretation of culture plates in the era of digital microbiology]]
* [[Journal:Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study|Critical analysis of the impact of AI on the patient–physician relationship: A multi-stakeholder qualitative study]]
* [[Journal:Judgements of research co-created by generative AI: Experimental evidence|Judgements of research co-created by generative AI: Experimental evidence]]
}}

Revision as of 18:03, 10 June 2024

Fig2 Berezin PLoSCompBio23 19-12.png

"Ten simple rules for managing laboratory information"

Information is the cornerstone of research, from experimental data/metadata and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems (LIMS) to transform this large information load into useful scientific findings. The development of mathematical models that can predict the properties of biological systems is the holy grail of computational biology. Such models can be used to test biological hypotheses, guide the development of biomanufactured products, engineer new systems meeting user-defined specifications, and much more ... (Full article...)

Recently featured: