Difference between revisions of "User:Shawndouglas/sandbox/sublevel10"

From LIMSWiki
Jump to navigationJump to search
 
(186 intermediate revisions by the same user not shown)
Line 3: Line 3:
| type      = notice
| type      = notice
| style    = width: 960px;
| style    = width: 960px;
| text      = This is sublevel2 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
| text      = This is sublevel10 of my sandbox, where I play with features and test MediaWiki code. If you wish to leave a comment for me, please see [[User_talk:Shawndouglas|my discussion page]] instead.<p></p>
}}
}}


==Sandbox begins below==
==Sandbox begins below==
{{Infobox journal article
==1. Introduction to materials and materials testing laboratories==
|name        =  
 
|image        =  
What is a material? This question is surprisingly more complex for the layperson than may be expected. The definition of "material" has varied significantly over the years, dependent on the course of study, laboratory, author, etc. A 1974 definition by Richardson and Peterson that has seen some use in academic study defines a material as "any nonliving matter of academic, engineering, or commercial importance."<ref>{{Cite book |last=Richardson |first=James H. |last2=Peterson |first2=Ronald V. |date= |year=1974 |title=Systematic Materials Analysis, Part 1 |url=https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false |chapter=Chapter 1: Introduction to Analytical Methods |series=Materials science series |publisher=Academic Press |place=New York |page=2 |isbn=978-0-12-587801-2 |doi=10.1016/B978-0-12-587801-2.X5001-0}}</ref> But recently biomaterials like biopolymers (as replacements for plastics)<ref>{{Cite journal |last=Das |first=Abinash |last2=Ringu |first2=Togam |last3=Ghosh |first3=Sampad |last4=Pramanik |first4=Nabakumar |date=2023-07 |title=A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers |url=https://link.springer.com/10.1007/s00289-022-04443-4 |journal=Polymer Bulletin |language=en |volume=80 |issue=7 |pages=7247–7312 |doi=10.1007/s00289-022-04443-4 |issn=0170-0839 |pmc=PMC9409625 |pmid=36043186}}</ref> and even natural<ref>{{Cite journal |last=Kurniawan |first=Nicholas A. |last2=Bouten |first2=Carlijn V.C. |date=2018-04 |title=Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models |url=https://linkinghub.elsevier.com/retrieve/pii/S2352431617301864 |journal=Extreme Mechanics Letters |language=en |volume=20 |pages=59–64 |doi=10.1016/j.eml.2018.01.004}}</ref> and engineered biological tissues<ref>{{Cite journal |last=Kim |first=Hyun S. |last2=Kumbar |first2=Sangamesh G. |last3=Nukavarapu |first3=Syam P. |date=2021-03 |title=Biomaterial-directed cell behavior for tissue engineering |url=https://linkinghub.elsevier.com/retrieve/pii/S246845112030057X |journal=Current Opinion in Biomedical Engineering |language=en |volume=17 |pages=100260 |doi=10.1016/j.cobme.2020.100260 |pmc=PMC7839921 |pmid=33521410}}</ref> may be referenced as "materials." (And to Richardson and Peterson's credit, they do add in the preface of their 1974 work that "[a]lthough the volumes are directed toward the physical sciences, they can also be of value for the biological scientist with materials problems."<ref>{{Cite book |last=Richardson |first=James H. |last2=Peterson |first2=Ronald V. |date= |year=1974 |title=Systematic Materials Analysis, Part 1 |url=https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false |chapter=Preface |series=Materials science series |publisher=Academic Press |place=New York |page=xiii |isbn=978-0-12-587801-2 |doi=10.1016/B978-0-12-587801-2.X5001-0}}</ref> A modern example would be biodegradable materials research for tissue and medical implant engineering.<ref>{{Cite journal |last=Modrák |first=Marcel |last2=Trebuňová |first2=Marianna |last3=Balogová |first3=Alena Findrik |last4=Hudák |first4=Radovan |last5=Živčák |first5=Jozef |date=2023-03-16 |title=Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications |url=https://www.mdpi.com/2079-4983/14/3/159 |journal=Journal of Functional Biomaterials |language=en |volume=14 |issue=3 |pages=159 |doi=10.3390/jfb14030159 |issn=2079-4983 |pmc=PMC10051288 |pmid=36976083}}</ref>) Yet today more questions arise. what of matter that doesn't have "academic, engineering, or commercial importance"; can it now be called a "material" in 2023? What if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists? Indeed, the definition of "material" today is no easy task. This isn't made easier when even modern textbooks introduce the topic of materials science without aptly defining what a material actually is<ref>{{Cite book |last=Callister |first=William D. |last2=Rethwisch |first2=David G. |date= |year=2021 |title=Fundamentals of materials science and engineering: An integrated approach |url=https://books.google.com/books?id=NC09EAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover |chapter=Chapter 1. Introduction |publisher=Wiley |place=Hoboken |pages=2–18 |isbn=978-1-119-74773-4}}</ref>, let alone what materials science is.<ref>{{Cite book |last=Sutton |first=Adrian P. |date=2021 |title=Concepts of materials science |edition=First edition |publisher=Oxford University Oress |place=Oxford [England] ; New York, NY |isbn=978-0-19-284683-9}}</ref> Perhaps the writers of said textbooks assume that the definitions of "material" and "materials science" have a "well duh" response.
|alt          = <!-- Alternative text for images -->
 
|caption      =  
To complicate things further, a material can be defined based upon the context of use. Take for example the ISO 10303-45 standard by the [[International Organization for Standardization]] (ISO), which addresses the representation and exchange of material and product manufacturing information in a standardized way, specifically describing how material and other engineering properties can be described in the model/framework.<ref name="ISO10303-45">{{cite web |url=https://www.iso.org/standard/78581.html |title=ISO 10303-45:2019 ''Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resource: Material and other engineering properties'' |publisher=International Organization for Standardization |date=November 2019 |accessdate=20 September 2023}}</ref><ref name=":0">{{Cite journal |last=Swindells |first=Norman |date=2009 |title=The Representation and Exchange of Material and Other Engineering Properties |url=http://datascience.codata.org/articles/abstract/10.2481/dsj.008-007/ |journal=Data Science Journal |language=en |volume=8 |pages=190–200 |doi=10.2481/dsj.008-007 |issn=1683-1470}}</ref> The context here is "standardized data transfer of material- and product-related data," which in turn involves [[Ontology (information science)|ontologies]] that limit the complexity of materials science discourse and help better organize materials and product data into information and knowledge. As such, the ISO 10303 set of standards must define "material," and 10303-45 complicates matters further in this regard (though it will be helpful for this guide in the end).
|title_full  = A review of the role of public health informatics in healthcare
 
|journal      = ''Journal of Taibah University Medical Sciences''
In reviewing ISO 10303-45 in 2009, Swindells notes the following about the standard<ref name=":0" />:
|authors      = Aziz, Hassan A.
 
|affiliations = Qatar University
<blockquote>The first edition of ISO 10303-45 was derived from experience of the testing of, so-called, "materials" properties, and the terminology used in the standard reflects this experience. However, the information modelling of an engineering material, such as alloyed steel or high density polyethylene, is no different from the information modelling of a "product." The "material" properties are therefore one of the characteristics of a product, just as its shape and other characteristics are. Therefore all "materials" are products, and the information model in ISO 10303-45 can be used for any property of any product.</blockquote>
|contact      = Email: Hassan dot Aziz at qu dot edu dot qa
 
|editors      =  
Put in other words, for the purposes of defining "material" for a broader, more standardized ontology, materials and products can be viewed as interchangeable. Mies puts this another way, stating that based on ISO 10303-45, a material can be defined as "a manufactured object with associated properties in the context of its use environment."<ref>{{Cite book |last=Mies, D. |date=2002 |editor-last=Kutz |editor-first=Myer |title=Handbook of materials selection |url=https://books.google.com/books?id=gWg-rchM700C&pg=PA499 |chapter=Chapter 17. Managing Materials Data |publisher=J. Wiley |place=New York |page=499 |isbn=978-0-471-35924-1}}</ref> But this representation only causes more confusion as we ask "does a material have to be manufactured?" After all, we have the term "raw material," which the Oxford English Dictionary defines as "the basic material from which a product is manufactured or made; unprocessed material."<ref name="OEDRawMat">{{cite web |url=https://www.oed.com/search/dictionary/?scope=Entries&q=raw+material |title=raw material |work=Oxford English Dictionary |accessdate=20 September 2023}}</ref> Additionally, chemical elements are defined as "the fundamental materials of which all matter is composed."<ref>{{Cite web |last=Lagowski, J.J.; Mason, B.H.; Tayler, R.J. |date=16 August 2023 |title=chemical element |work=Encyclopedia Britannica |url=https://www.britannica.com/science/chemical-element |accessdate=20 September 2023}}</ref> Taking into account the works of Richardson and Peterson, Mies, and Swindells, as well as ISO 10303-45, the concepts of "raw materials" and "chemical elements," and modern trends towards the inclusion of biomaterials (though discussion of biomaterials will be limited here) in materials science, we can land on the following definition for the purposes of this guide:
|pub_year    = 2017
 
|vol_iss      = '''12'''(1)
:A material is discrete matter that is elementally raw (e.g., native metallic and non-metallic elements), fundamentally processed (e.g., calcium oxide), or fully manufactured (by human, automation, or both; e.g., a fastener) that has an inherent set of properties that a human or automation-driven solution (e.g., an [[artificial intelligence]] [AI] algorithm) has identified for a potential or realized use environment.
|pages        = 78-81
 
|doi         = [http://10.1016/j.jtumed.2016.08.011 10.1016/j.jtumed.2016.08.011]
First, this definition more clearly defines the types of matter that can be included, recognizing that manufactured products may still be considered materials. Initially this may seem troublesome, however, in the scope of complex manufactured products such as automobiles and satellites; is anyone really referring to those types of products as "materials"? As such, the word "discrete" is included, which in manufacturing parlance refers to distinct components such as brackets and microchips that can be assembled into a greater, more complex finished product. This means that while both a bolt and an automobile are manufactured "products," the bolt, as a discrete type of matter, can be justified as a material, whereas the automobile can't. Second—answering the question of "what if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists?"—the definition recognizes that the material needs at a minimum recognition of a potential use case. This turns out to be OK, because if no use case has been identified, the matter still can be classified as an element, compound, or substance. It also insinuates that that element, compound, or substance with no use case isn't going to be used in the manufacturing of any material or product. Third, the definition also recognizes the recent phenomena of autonomous systems discovering new materials and whether or not those autonomous systems should be credited with inventorship.<ref>{{Cite journal |last=Ishizuki |first=Naoya |last2=Shimizu |first2=Ryota |last3=Hitosugi |first3=Taro |date=2023-12-31 |title=Autonomous experimental systems in materials science |url=https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2197519 |journal=Science and Technology of Advanced Materials: Methods |language=en |volume=3 |issue=1 |pages=2197519 |doi=10.1080/27660400.2023.2197519 |issn=2766-0400}}</ref> The question of inventorship is certainly worth discussion, though it is beyond the scope of this guide. Regardless, the use of automated systems to match a set of properties of a particular matter to a real-world use case isn't likely to go away, and this definition accepts that likelihood.
|issn        = 1658-3612
 
|license      = [http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International]
Finally, this leads us to the realization that materials, by definition, are inherently linked to the act of intentional human- or automation-driven creation, i.e., manufacturing and construction.
|website      = [https://www.sciencedirect.com/science/article/pii/S1658361216301019 https://www.sciencedirect.com/science/article/pii/S1658361216301019]
 
|download    = [https://www.sciencedirect.com/science/article/pii/S1658361216301019/pdfft?md5=045bce391e357a16115e25d4ca6fc1ea&pid=1-s2.0-S1658361216301019-main.pdf https://www.sciencedirect.com/science/article/pii/S1658361216301019/pdfft] (PDF)
}}
{{ombox
| type      = content
| style    = width: 500px;
| text      = This article should not be considered complete until this message box has been removed. This is a work in progress.
}}
==Abstract==
Recognized as information intensive, healthcare requires timely, accurate [[information]] from many different sources generated by health information systems (HIS). With the availability of information technology in today's world and its integration in healthcare systems; the term "[[public health informatics]]" (PHI) was coined and used. The main focus of PHI is the use of information science and technology for promoting population health rather than of individuals. PHI has a disease prevention rather than treatment focus in order to prevent chain of events or disease spread. Moreover, PHI often operates at the level of government rather than at the private sector. This review article provides an overview of the field of PHI and compares between paper-based surveillance systems and public health information networks (PHIN). The current trends and future challenges of applying PHI systems in KSA were also reported.


==Public health informatics: Introduction and definition==
===1.1 Materials testing labs, then and now===
Public health informatics (PHI) is defined as the systematic application of information, computer science, and technology in areas of public health, including surveillance, prevention, preparedness, and health promotion. The main applications of PHI are 1. promoting the health of the whole population, which will ultimately promote the health of individuals<ref name="HoytHealth14">{{cite book |title=Health Informatics: Practical Guide for Healthcare and Information Technology Professionals |editor=Hoyt, R.E.; Yoshihashi, A.K. |publisher=Lulu.com |pages=534 |edition=6th |year=2014 |isbn=9781304791108}}</ref> and 2. preventing diseases and injuries by changing the conditions that increases the risk of the population.<ref name="ChenAReview14">{{cite journal |title=A Review of Data Quality Assessment Methods for Public Health Information Systems |journal=International Journal of Environmental Research and Public Health |author=Chen, H.; Hailey, D.; Wang, N.; Yu, P. |volume=11 |issue=5 |pages=5170-5207 |year=2014 |doi=10.3390/ijerph110505170 |pmid=24830450 |pmc=PMC4053886}}</ref> Basically, PHI is using informatics in public health data collection, [[Data analysis|analysis]], and actions. Emphasis on disease prevention in the population, realizing its objectives using a large variety of interventions, and work within governmental settings are aspects that make PHI different than other fields of [[Informatics (academic field)|informatics]].<ref name="YasnoffPublic2000">{{cite journal |title=Public health informatics: improving and transforming public health in the information age |journal=Journal of Public Health and Management and Practice |author=Yasnoff, W.A.; O'Carroll, P.W.; Koo, D. et al. |volume=6 |issue=6 |pages=67-75 |year=2000 |pmid=18019962}}</ref> The scope of PHI includes the conceptualization, design, development, deployment, refinement, maintenance, and evaluation of communication, surveillance, and information systems relevant to public health.<ref name="ChoiThePast12">{{cite journal |title=The past, present, and future of public health surveillance |journal=Scientifica |author=Choi, B.C. |volume=2012 |page=875253 |year=2012 |doi=10.6064/2012/875253 |pmid=24278752 |pmc=PMC3820481}}</ref> PHI could be considered one of the most useful systems in addressing disease surveillance, epidemics, natural disasters, and bioterrorism. The use of computerized global surveillance and data collection systems, such as [[health information exchange]] (HIE) and health information organization (HIO), could assist in population-level monitoring. This could help to avert the negative impact of a widespread global epidemic.


==Surveillance systems==
====1.1.1 Materials testing 2.0====
Surveillance in public health is the collection, analysis, and interpretation of data that are important for the prevention of injury and diseases. Through available data, possible early detection of outbreaks can be achieved through timely and complete receipt, review, and investigation of disease case reports. An inclusive surveillance effort supports timely investigation and identifies data needs for managing public health response to an outbreak or terrorist event.<ref name="MastrianInformatics17">{{cite book |chapter=Chapter 14: Informatics for Health Professionals |title=Informatics for Health Professionals |editor=Mastrian, K.; McConigle, D. |author=Kraft, M.R.; Androwitch, I.; Mastriak, K. et al. |publisher=Jones & Bartlett Learning |year=2017 |isbn=9781284102635}}</ref> Worldwide, governments are strengthening their public health disease surveillance systems, taking advantage of modern information technology to build an integrated, effective, and reliable disease reporting system.<ref name="WangEmergence08">{{cite journal |title=Emergence and control of infectious diseases in China |journal=The Lancet |author=Wang, L.; Wang, Y.; Jin, S. et al. |volume=372 |issue=9649 |page=1598-1605 |year=2008 |doi=10.1016/S0140-6736(08)61365-3}}</ref> A surveillance system, such as syndromic surveillance systems, could collect symptoms and clinical features of an undiagnosed disease or health event in near real time that might indicate the early stages of an outbreak or bioterrorism attack. For instance, local or regional public health departments could alert all the clinicians within an HIO about unique cases of a highly resistant infectious organism or a widespread of communicable diseases. Consequently, HIO can play an important role as part of PHI in providing available patient data in conditions of natural disaster when paper-based records might be destroyed or unavailable.


The latest developments of public health informatics, such as [[geographic information system]]s (GIS), which use digitized maps from satellites or aerial photography, can be used to provide a large volume of data.<ref name="ChoiThePast12" /> This enables the combination of various information such as geographic location, trends, conditions, and spatial patterns. GIS along with the incorporation of mobile technology has proved to be useful in tracking infectious disease, public health disasters, and bioterrorism.
*https://onlinelibrary.wiley.com/doi/full/10.1111/str.12434
*https://onlinelibrary.wiley.com/doi/full/10.1111/str.12370


==Paper-based surveillance==
Surveillance systems were mainly in the form of paper reports submitted from hospitals, physicians, and clinics to local health departments. In the United States, for example, these institutions forwarded their reports to a state level and eventually to the [[Centers for Disease Control and Prevention]] (CDC) through email or fax. The reports would reach their final destination to the World Health Organization (WHO). This system was not quite efficient due to the variation in type of data reported between states. In addition, the dependence on a paper-based system and the delay in the identification of diseases affected the response rate and management of outbreaks.


Paper-based surveillance systems require exhaustive manual data entry and are often considered fragmented because data from different sections of a study are not collected or available. These documents are separately assessed as cases, clusters or trends and therefore are time consuming, limited by incomplete data collection and inadequate analytical capacity. Thus, they are incapable of providing timely information for public health action. Another drawback of paper-based surveillance systems is the vulnerability of the paper records, especially during cases of natural disasters. Further, these systems do not help in the globalization of trends or data.
===1.2 Industries, products, and raw materials===


==Modern surveillance systems==
Currently, there is a steady transformation into electronic surveillance systems delivering more timely data and information concerning a disease or a situation that can cause an outbreak. This transformation has been facilitated by the modern public health information network (PHIN), providing efficient information access and exchange among public health agencies at different levels. PHIN is standardized, allowing for efficient interoperability among different levels of public health entities.<ref name="HoytHealth14" /><ref name="YasnoffANat01">{{cite journal |title=A National Agenda for Public Health Informatics |journal=JAMIA |author=Yasnoff, W.A.; Overhage, J.M.; Humphreys, B.L. et al. |volume=8 |issue=6 |pages=535-545 |year=2001 |pmid=11687561 |pmc=PMC130064}}</ref> To put it in a simpler form, information in PHIN is shared through the network and can be stored and retrieved easily, and it could be tracked back to sources. Data shared through the network can be further analyzed to provide information that helps public health professionals and support their decision. Unlike paper-based surveillance systems, data in PHIN are stored digitally and are not easily destroyed.


==Comparison between paper-based and electronic surveillance systems==
===1.3 Laboratory roles and activities in the industry===
Generating adequate and meaningful data in a short time could not be achieved with paper-based surveillance systems because of the difficulty in retrieving the data. Furthermore, paper-based systems incur costs in terms of paper, labor, and space for storing. Paper-based data cannot be shared easily with other systems and are more susceptible to privacy and confidentiality breaches. The use of [[electronic health record]]s further enhances the early detection of cases, clusters, outbreaks, and trends of communicable diseases and environmental hazard exposures. These characteristics improve the chances of detection of disease surveillance, epidemics, natural disasters, and bioterrorism events. The use of systems, such as real-time outbreak detection systems, allows for the real time, daily detection, analysis, and dissemination of outbreak information to the targeted populations and agencies. The use of a geographic information system, such as HealthMap, has further improved the identification, monitoring, alerting, and responding to emerging diseases, pandemics, bioterrorism, and natural disasters, not only at the national but at the global level.<ref name="FanAmulti10">{{cite journal |title=A multi-function public health surveillance system and the lessons learned in its development: the Alberta Real Time Syndromic Surveillance Net |journal=Canadian Journal of Public Health |author=Fan, S.; Blair, C.; Brown, A. et al. |volume=101 |issue=6 |pages=454-8 |year=2010 |pmid=21370780}}</ref>


Real studied examples showed a clear difference between the paper-based surveillance system and PHIN. The examples proved that collecting information for disease surveillance using smartphone devices was faster and cheaper than paper-based surveys, which was considered the traditional way for collecting information about diseases. A surveillance study in Kenya about influenza and respiratory diseases was conducted using paper or smartphones surveys. This study included 2038 questionnaires, of which 1019 were paper based and 1019 were smartphone questionnaires. Researchers in this study found that 3% of smartphone questionnaires were incomplete compared with 5% of the paper-based questionnaires. Additionally, they found that seven of the paper-based questionnaires were duplicated, while no smartphone questionnaires were duplicated. Furthermore, uploading data from smartphone questionnaires took only eight hours, whereas it took 24 hours for paper-based questionnaires. Cost-wise, collecting and processing data from paper-based questionnaires was $61,830 and $45,546, respectively, for a smartphone questionnaire.<ref name="NjugunaDisease12">{{cite journal |url=https://www.healio.com/infectious-disease/practice-management/news/print/infectious-disease-news/%7Bd2f404e3-399e-428d-b821-653f73ddaf30%7D/disease-surveillance-via-smartphones-cheaper-faster-vs-paper-based-surveys |title=Disease surveillance via smartphones cheaper, faster vs. paper-based surveys |journal=Infectious Disease News |author=Njuguna, H.N. |volume=25 |issue=4 |pages=13 |year=2012}}</ref>
====1.3.1 R&D roles and activities====


==Applications of PHI==
====1.3.2 Pre-manufacturing and manufacturing roles and activities====
Sources of data include sales records of over-the-counter (OTC) medication, rate of school absence combined with the rate of visits to the school clinic and behavioral factors associated with the transfer of sexually transmitted diseases. During epidemics and natural disasters public health reports are essential tools to estimate morbidity and mortality. In addition, surveillance data assist in the estimation of the resources and man power needed to handle these disasters. Bioterrorism is another concern where the public is exposed to sudden and uncontrolled circumstances of the biological agents' release. This was observed in the U.S. in the beginning of the twenty-first century, where letters containing anthrax spores had been mailed to different addresses in the country. This incident resulted in causalities and thousands of people who were at risk of exposure to the anthrax pathogen. It highlighted the weakness of public health surveillance systems at that time and urged authorities for more immediate actions. In addition, it raised several questions of the need to keep dangerous pathogens stored in the U.S. Army Medical Research Institute of Infectious Diseases. Public health infrastructures and surveillance systems became more prepared to detect and to take immediate actions if faced with similar situations. PHI played a role in the collection and analysis of real-time data that were introduced right after the bioterrorism attack.


The data can be either a direct stream or aggregated data over time that are sent periodically through a secured connection to the surveillance systems. Data are then analyzed and converted to information by the usage of statistical algorithms that detect anomalies that could help to identify outbreaks.<ref name="LombardoDisease07">{{cite book |title=Disease Surveillance: A Public Health Informatics Approach |author=Lombardo, J.S.; Buckeridge, D.L. |publisher=John Wiley and Sons |pages=488 |year=2007 |isbn=978-0-470-06812-0}}</ref> PHI also played significant roles in responding to worldwide disasters, such as Hurricane Katrina and H1N1 influenza<ref name="SneeTheCase04">{{cite journal |title=The case for integrating public health informatics networks |journal=IEEE Engineering in Medicine and Biology Magazine |author=Snee, N.L.; McCormick, K.A. |volume=23 |issue=1 |pages=81–88 |year=2004 |doi=10.1109/MEMB.2004.1297178}}</ref>, shedding light on the importance and the role of public health in emergency disasters. This is realized by an up-to-date continuity of operations plan (COOP), which has an important role in preparation for disasters.<ref name="RozekBusiness08">{{cite journal |title=Business continuity planning. It's a critical element of disaster preparedness. Can you afford to keep it off your radar? |journal=Health Management Technology |author=Rozek, P.; Groth, D. |volume=29 |issue=3 |pages=10–12 |year=2008 |pmid=18380237}}</ref> This is achieved by collecting data, detecting a threat and responding to that threat correctly and suitable time.<ref name="KohaneTheCont02">{{cite journal |title=The Contributions of Biomedical Informatics to the Fight Against Bioterrorism |journal=JAMIA |author=Kohane, I.S. |volume=9 |issue=2 |pages=116–19 |year=2002 doi=10.1197/jamia.M1054 |pmid=11861623 |pmc=PMC344565}}</ref> Hence, the main function of public health is to monitor and detect the population who is at risk and prevent them from facing diseases and outbreaks.
====1.3.3 Post-production quality control and regulatory roles and activities====


==References==
==References==
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
==Notes==
This presentation is faithful to the original, with only a few minor changes to presentation, spelling, and grammar. PMCID and DOI were added when they were missing from the original reference. Otherwise, the article appears as originally posted, per the "no derivatives" portion of the license.
<!--Place all category tags here-->
[[Category:LIMSwiki journal articles (added in 2018)‎]]
[[Category:LIMSwiki journal articles (all)‎]]
[[Category:LIMSwiki journal articles on public health informatics]]

Latest revision as of 23:51, 20 September 2023

Sandbox begins below

1. Introduction to materials and materials testing laboratories

What is a material? This question is surprisingly more complex for the layperson than may be expected. The definition of "material" has varied significantly over the years, dependent on the course of study, laboratory, author, etc. A 1974 definition by Richardson and Peterson that has seen some use in academic study defines a material as "any nonliving matter of academic, engineering, or commercial importance."[1] But recently biomaterials like biopolymers (as replacements for plastics)[2] and even natural[3] and engineered biological tissues[4] may be referenced as "materials." (And to Richardson and Peterson's credit, they do add in the preface of their 1974 work that "[a]lthough the volumes are directed toward the physical sciences, they can also be of value for the biological scientist with materials problems."[5] A modern example would be biodegradable materials research for tissue and medical implant engineering.[6]) Yet today more questions arise. what of matter that doesn't have "academic, engineering, or commercial importance"; can it now be called a "material" in 2023? What if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists? Indeed, the definition of "material" today is no easy task. This isn't made easier when even modern textbooks introduce the topic of materials science without aptly defining what a material actually is[7], let alone what materials science is.[8] Perhaps the writers of said textbooks assume that the definitions of "material" and "materials science" have a "well duh" response.

To complicate things further, a material can be defined based upon the context of use. Take for example the ISO 10303-45 standard by the International Organization for Standardization (ISO), which addresses the representation and exchange of material and product manufacturing information in a standardized way, specifically describing how material and other engineering properties can be described in the model/framework.[9][10] The context here is "standardized data transfer of material- and product-related data," which in turn involves ontologies that limit the complexity of materials science discourse and help better organize materials and product data into information and knowledge. As such, the ISO 10303 set of standards must define "material," and 10303-45 complicates matters further in this regard (though it will be helpful for this guide in the end).

In reviewing ISO 10303-45 in 2009, Swindells notes the following about the standard[10]:

The first edition of ISO 10303-45 was derived from experience of the testing of, so-called, "materials" properties, and the terminology used in the standard reflects this experience. However, the information modelling of an engineering material, such as alloyed steel or high density polyethylene, is no different from the information modelling of a "product." The "material" properties are therefore one of the characteristics of a product, just as its shape and other characteristics are. Therefore all "materials" are products, and the information model in ISO 10303-45 can be used for any property of any product.

Put in other words, for the purposes of defining "material" for a broader, more standardized ontology, materials and products can be viewed as interchangeable. Mies puts this another way, stating that based on ISO 10303-45, a material can be defined as "a manufactured object with associated properties in the context of its use environment."[11] But this representation only causes more confusion as we ask "does a material have to be manufactured?" After all, we have the term "raw material," which the Oxford English Dictionary defines as "the basic material from which a product is manufactured or made; unprocessed material."[12] Additionally, chemical elements are defined as "the fundamental materials of which all matter is composed."[13] Taking into account the works of Richardson and Peterson, Mies, and Swindells, as well as ISO 10303-45, the concepts of "raw materials" and "chemical elements," and modern trends towards the inclusion of biomaterials (though discussion of biomaterials will be limited here) in materials science, we can land on the following definition for the purposes of this guide:

A material is discrete matter that is elementally raw (e.g., native metallic and non-metallic elements), fundamentally processed (e.g., calcium oxide), or fully manufactured (by human, automation, or both; e.g., a fastener) that has an inherent set of properties that a human or automation-driven solution (e.g., an artificial intelligence [AI] algorithm) has identified for a potential or realized use environment.

First, this definition more clearly defines the types of matter that can be included, recognizing that manufactured products may still be considered materials. Initially this may seem troublesome, however, in the scope of complex manufactured products such as automobiles and satellites; is anyone really referring to those types of products as "materials"? As such, the word "discrete" is included, which in manufacturing parlance refers to distinct components such as brackets and microchips that can be assembled into a greater, more complex finished product. This means that while both a bolt and an automobile are manufactured "products," the bolt, as a discrete type of matter, can be justified as a material, whereas the automobile can't. Second—answering the question of "what if a particular matter exists today but hasn't been thoroughly studied to determine its value to researchers and industrialists?"—the definition recognizes that the material needs at a minimum recognition of a potential use case. This turns out to be OK, because if no use case has been identified, the matter still can be classified as an element, compound, or substance. It also insinuates that that element, compound, or substance with no use case isn't going to be used in the manufacturing of any material or product. Third, the definition also recognizes the recent phenomena of autonomous systems discovering new materials and whether or not those autonomous systems should be credited with inventorship.[14] The question of inventorship is certainly worth discussion, though it is beyond the scope of this guide. Regardless, the use of automated systems to match a set of properties of a particular matter to a real-world use case isn't likely to go away, and this definition accepts that likelihood.

Finally, this leads us to the realization that materials, by definition, are inherently linked to the act of intentional human- or automation-driven creation, i.e., manufacturing and construction.


1.1 Materials testing labs, then and now

1.1.1 Materials testing 2.0


1.2 Industries, products, and raw materials

1.3 Laboratory roles and activities in the industry

1.3.1 R&D roles and activities

1.3.2 Pre-manufacturing and manufacturing roles and activities

1.3.3 Post-production quality control and regulatory roles and activities

References

  1. Richardson, James H.; Peterson, Ronald V. (1974). "Chapter 1: Introduction to Analytical Methods". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. 2. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  2. Das, Abinash; Ringu, Togam; Ghosh, Sampad; Pramanik, Nabakumar (1 July 2023). "A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers" (in en). Polymer Bulletin 80 (7): 7247–7312. doi:10.1007/s00289-022-04443-4. ISSN 0170-0839. PMC PMC9409625. PMID 36043186. https://link.springer.com/10.1007/s00289-022-04443-4. 
  3. Kurniawan, Nicholas A.; Bouten, Carlijn V.C. (1 April 2018). "Mechanobiology of the cell–matrix interplay: Catching a glimpse of complexity via minimalistic models" (in en). Extreme Mechanics Letters 20: 59–64. doi:10.1016/j.eml.2018.01.004. https://linkinghub.elsevier.com/retrieve/pii/S2352431617301864. 
  4. Kim, Hyun S.; Kumbar, Sangamesh G.; Nukavarapu, Syam P. (1 March 2021). "Biomaterial-directed cell behavior for tissue engineering" (in en). Current Opinion in Biomedical Engineering 17: 100260. doi:10.1016/j.cobme.2020.100260. PMC PMC7839921. PMID 33521410. https://linkinghub.elsevier.com/retrieve/pii/S246845112030057X. 
  5. Richardson, James H.; Peterson, Ronald V. (1974). "Preface". Systematic Materials Analysis, Part 1. Materials science series. New York: Academic Press. p. xiii. doi:10.1016/B978-0-12-587801-2.X5001-0. ISBN 978-0-12-587801-2. https://books.google.com/books?id=BNocpYI8gJkC&printsec=frontcover&dq=Systematic+Materials+analysis&hl=en&newbks=1&newbks_redir=0&sa=X&ved=2ahUKEwjB1OeQx-aAAxWnmmoFHSV2BSsQ6AF6BAgMEAI#v=onepage&q=Systematic%20Materials%20analysis&f=false. 
  6. Modrák, Marcel; Trebuňová, Marianna; Balogová, Alena Findrik; Hudák, Radovan; Živčák, Jozef (16 March 2023). "Biodegradable Materials for Tissue Engineering: Development, Classification and Current Applications" (in en). Journal of Functional Biomaterials 14 (3): 159. doi:10.3390/jfb14030159. ISSN 2079-4983. PMC PMC10051288. PMID 36976083. https://www.mdpi.com/2079-4983/14/3/159. 
  7. Callister, William D.; Rethwisch, David G. (2021). "Chapter 1. Introduction". Fundamentals of materials science and engineering: An integrated approach. Hoboken: Wiley. pp. 2–18. ISBN 978-1-119-74773-4. https://books.google.com/books?id=NC09EAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover. 
  8. Sutton, Adrian P. (2021). Concepts of materials science (First edition ed.). Oxford [England] ; New York, NY: Oxford University Oress. ISBN 978-0-19-284683-9. 
  9. "ISO 10303-45:2019 Industrial automation systems and integration — Product data representation and exchange — Part 45: Integrated generic resource: Material and other engineering properties". International Organization for Standardization. November 2019. https://www.iso.org/standard/78581.html. Retrieved 20 September 2023. 
  10. 10.0 10.1 Swindells, Norman (2009). "The Representation and Exchange of Material and Other Engineering Properties" (in en). Data Science Journal 8: 190–200. doi:10.2481/dsj.008-007. ISSN 1683-1470. http://datascience.codata.org/articles/abstract/10.2481/dsj.008-007/. 
  11. Mies, D. (2002). "Chapter 17. Managing Materials Data". In Kutz, Myer. Handbook of materials selection. New York: J. Wiley. p. 499. ISBN 978-0-471-35924-1. https://books.google.com/books?id=gWg-rchM700C&pg=PA499. 
  12. "raw material". Oxford English Dictionary. https://www.oed.com/search/dictionary/?scope=Entries&q=raw+material. Retrieved 20 September 2023. 
  13. Lagowski, J.J.; Mason, B.H.; Tayler, R.J. (16 August 2023). "chemical element". Encyclopedia Britannica. https://www.britannica.com/science/chemical-element. Retrieved 20 September 2023. 
  14. Ishizuki, Naoya; Shimizu, Ryota; Hitosugi, Taro (31 December 2023). "Autonomous experimental systems in materials science" (in en). Science and Technology of Advanced Materials: Methods 3 (1): 2197519. doi:10.1080/27660400.2023.2197519. ISSN 2766-0400. https://www.tandfonline.com/doi/full/10.1080/27660400.2023.2197519.