Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text.)
(Updated article of the week text.)
Line 1: Line 1:
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Box1 Szarfman CommMed22 2.png|240px]]</div>
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig1 Hong CancerInnov22 1-1.png|240px]]</div>
'''"[[Journal:Recommendations for achieving interoperable and shareable medical data in the USA|Recommendations for achieving interoperable and shareable medical data in the USA]]"'''
'''"[[Journal:Application of informatics in cancer research and clinical practice: Opportunities and challenges|Application of informatics in cancer research and clinical practice: Opportunities and challenges]]"'''


Easy access to large quantities of accurate health data is required to understand medical and scientific [[information]] in real time; evaluate public health measures before, during, and after times of crisis; and prevent medical errors. Introducing a system in the United States of America that allows for efficient access to such health data and ensures auditability of data facts, while avoiding data silos, will require fundamental changes in current practices. Here, we recommend the implementation of standardized data collection and transmission systems, universal identifiers for individual patients and end users, a reference standard infrastructure to support calibration and integration of [[laboratory]] results from equivalent tests, and modernized working practices. Requiring comprehensive and binding [[Technical standard|standards]], rather than incentivizing voluntary and often piecemeal efforts for [[data exchange]], will allow us to achieve the analytical information environment that patients need ... ('''[[Journal:Recommendations for achieving interoperable and shareable medical data in the USA|Full article...]]''')<br />
[[Cancer informatics]] has significantly progressed in the big data era. We summarize the application of [[Informatics (academic field)|informatics]] approaches to the [[cancer]] domain from both the informatics perspective (e.g., [[Information management|data management]] and [[Information science|data science]]) and the clinical perspective (e.g., cancer screening, risk assessment, diagnosis, treatment, and prognosis). We discuss various informatics methods and tools that are widely applied in cancer research and practices, such as cancer databases, data standards, terminologies, high-throughput [[omics]] [[data mining]], [[machine learning]] algorithms, [[artificial intelligence]] [[imaging]], and intelligent radiation ... ('''[[Journal:Application of informatics in cancer research and clinical practice: Opportunities and challenges|Full article...]]''')<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:Recommendations for achieving interoperable and shareable medical data in the USA|Recommendations for achieving interoperable and shareable medical data in the USA]]
* [[Journal:Can a byte improve our bite? An analysis of digital twins in the food industry|Can a byte improve our bite? An analysis of digital twins in the food industry]]
* [[Journal:Can a byte improve our bite? An analysis of digital twins in the food industry|Can a byte improve our bite? An analysis of digital twins in the food industry]]
* [[Journal:Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database|Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database]]
* [[Journal:Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database|Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database]]
* [[Journal:Elegancy: Digitizing the wisdom from laboratories to the cloud with free no-code platform|Elegancy: Digitizing the wisdom from laboratories to the cloud with free no-code platform]]
}}
}}

Revision as of 15:03, 9 May 2023

Fig1 Hong CancerInnov22 1-1.png

"Application of informatics in cancer research and clinical practice: Opportunities and challenges"

Cancer informatics has significantly progressed in the big data era. We summarize the application of informatics approaches to the cancer domain from both the informatics perspective (e.g., data management and data science) and the clinical perspective (e.g., cancer screening, risk assessment, diagnosis, treatment, and prognosis). We discuss various informatics methods and tools that are widely applied in cancer research and practices, such as cancer databases, data standards, terminologies, high-throughput omics data mining, machine learning algorithms, artificial intelligence imaging, and intelligent radiation ... (Full article...)
Recently featured: