Difference between revisions of "X-ray scattering techniques"

From LIMSWiki
Jump to navigationJump to search
m (Internal link.)
(Turned into a transclusion)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
'''X-ray scattering techniques''' are a family of non-destructive analytical techniques which reveal [[information]] about the crystallographic structure, chemical composition, and physical properties of materials and thin films. These techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength or energy. Among these techniques exists two primary methodologies: diffraction and scattering.
{{wikipedia::X-ray scattering techniques}}
==Notes==
This article is a direct transclusion of [https://en.wikipedia.org/wiki/X-ray_scattering_techniques the Wikipedia article] and therefore may not meet the same editing standards as LIMSwiki.
 
<!---Place all category tags here-->
[[Category:Articles transcluded from other wikis]]
[[Category:Scientific techniques]]

Latest revision as of 15:53, 21 September 2022

This is an X-ray diffraction pattern formed when X-rays are focused on a crystalline material, in this case a protein. Each dot, called a reflection, forms from the coherent interference of scattered X-rays passing through the crystal.

X-ray scattering techniques are a family of non-destructive analytical techniques which reveal information about the crystal structure, chemical composition, and physical properties of materials and thin films. These techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength or energy.

Note that X-ray diffraction is sometimes considered a sub-set of X-ray scattering, where the scattering is elastic and the scattering object is crystalline, so that the resulting pattern contains sharp spots analyzed by X-ray crystallography (as in the Figure). However, both scattering and diffraction are related general phenomena and the distinction has not always existed. Thus Guinier's classic text[1] from 1963 is titled "X-ray diffraction in Crystals, Imperfect Crystals and Amorphous Bodies" so 'diffraction' was clearly not restricted to crystals at that time.

Scattering techniques

Elastic scattering

  • X-ray diffraction, sometimes called Wide-angle X-ray diffraction (WAXD)
  • Small-angle X-ray scattering (SAXS) probes structure in the nanometer to micrometer range by measuring scattering intensity at scattering angles 2θ close to 0°.
  • X-ray reflectivity is an analytical technique for determining thickness, roughness, and density of single layer and multilayer thin films.
  • Wide-angle X-ray scattering (WAXS), a technique concentrating on scattering angles 2θ larger than 5°.

Spectrum of various inelastic scattering processes that can be probed with inelastic X-ray scattering (IXS).

Inelastic X-ray scattering (IXS)

In IXS the energy and angle of inelastically scattered X-rays are monitored, giving the dynamic structure factor . From this many properties of materials can be obtained, the specific property depending on the scale of the energy transfer. The table below, listing techniques, is adapted from.[2] Inelastically scattered X-rays have intermediate phases and so in principle are not useful for X-ray crystallography. In practice X-rays with small energy transfers are included with the diffraction spots due to elastic scattering, and X-rays with large energy transfers contribute to the background noise in the diffraction pattern.

Technique Typical Incident Energy, keV Energy transfer range, eV Information on:
Compton scattering 100 1,000 Fermi Surface Shape
Resonant IXS (RIXS) 4-20 0.1 - 50 Electronic Structure & Excitations
Non-Resonant IXS (NRIXS) 10 0.1 - 10 Electronic Structure & Excitations
X-ray Raman scattering 10 50 - 1000 Absorption Edge Structure, Bonding, Valence
High resolution IXS 10 0.001 - 0.1 Atomic Dynamics, Phonon Dispersion

See also

References

  1. ^ Guinier, A. (1963). X-ray diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. San Francisco: W.H. Freeman & Co.
  2. ^ Baron, Alfred Q. R (2015). "Introduction to High-Resolution Inelastic X-Ray Scattering". arXiv:1504.01098 [cond-mat.mtrl-sci].

Notes

This article is a direct transclusion of the Wikipedia article and therefore may not meet the same editing standards as LIMSwiki.