Difference between revisions of "User:Shawndouglas/sandbox/sublevel1"

From LIMSWiki
Jump to navigationJump to search
Line 1: Line 1:
Like any other communicable disease, laboratories handling specimens that are suspected or confirmed of containing the SARS-CoV-2 virus must take appropriate precautions to protect all stakeholders. This involves not only any in-house protocols for preventing contamination but also any official guidance that goes beyond or supersedes in-house protocols. Examples of guidance documents include the World Health Organization's ''[https://www.who.int/publications/i/item/WHO-WPE-GIH-2021.1 Laboratory biosafety guidance related to coronavirus disease (COVID-19)]'', the CDC's ''[https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with Coronavirus Disease 2019 (COVID-19)]'', and the CDC's ''[https://www.cdc.gov/coronavirus/2019-ncov/lab/lab-safety-practices.html Guidance for General Laboratory Safety Practices during the COVID-19 Pandemic]''. Additionally, it may be helpful to look to what other laboratories are doing. In a brief article published in ''The Lancet Microbe'', Choy highlights an International Federation of Clinical Chemistry and Laboratory Medicine Taskforce survey of biochemistry labs and how they've been mitigating biohazard risks associated with SARS-CoV-2. Actions include<ref name="ChoyChanges20">{{cite journal |title=Changes in clinical laboratory operations and biosafety measures to mitigate biohazard risks during the COVID-19 pandemic |journal=The Lancet Microbe |author=Choy, K.W. |volume=1 |issue=7 |pages=E273-E274 |year=2020 |doi=10.1016/S2666-5247(20)30168-3}}</ref>:
[[File:Molecular diagnostics qia symphony.jpg|right|360px]]Laboratory computing has positively affected clinical service delivery and laboratory management for decades.<ref name="JonesInform14">{{cite journal |title=Informatics and the Clinical Laboratory |journal=The Clinical Biochemist Reviews |author=Jones, R.G.; Johnson, O.A.; Baststone, G. |volume=35 |issue=3 |pages=177–192 |year=2014 |pmid=25336763 |pmc=PMC4204239}}</ref> These benefits are achieved through automation elements that reduce data entry errors, reduce workloads, collect laboratory instrument data, and check for common errors like duplicate test orders.<ref name="PitkusLab18">{{cite journal |title=Laboratory Informatics: An Increasingly Valuable Commodity Emerging from Today's Laboratories |journal=ASCLS Today |author=Pitkus, A. |volume=32 |issue=2 |year=2018 |url=https://ascls.org/laboratory-informatics-an-increasingly-valuable-commodity-emerging-from-today-s-laboratories/ |accessdate=13 September 2021}}</ref><ref name="RaeenHowLab18">{{cite journal |title=How laboratory informatics has impacted healthcare overall |journal=Applied Research Projects |author=Raeen, M.R. |volume=54 |year=2018 |url=https://dc.uthsc.edu/hiimappliedresearch/54 |doi=10.21007/chp.hiim.0056}}</ref> In the world of [[Epidemiology|epidemiological]] testing, those same [[laboratory informatics]] applications—such as [[laboratory information management system]]s (LIMS), [[laboratory information system]]s (LIS), and [[hospital information system]]s (HIS)—provide similar value.


* restricting laboratorian access to testing of suspected and confirmed COVID-19 patient samples;
Pandemic response realizes benefits through crisis and risk management systems, syndromic surveillance systems, and medical diagnostic tools. As Norwegian researchers Wilson and Jumbert note about humanitarian technologies and pandemics, "collecting information is central to the implementation of an efficient response, including situational information, needs assessment, and operational information."<ref name="WilsonTheNew18">{{cite journal |title=The new informatics of pandemic response: humanitarian technology, efficiency, and the subtle retreat of national agency |journal=Journal of International Humanitarian Action |author=Wilson, C.; Jumbert, M.G. |volume=3 |at=8 |year=2018 |doi=10.1186/s41018-018-0036-5 |pmc=PMC7149122}}</ref> At the response's core is the valuable reporting of public health data (discussed in the next section). As such, those labs and healthcare systems performing disease testing see numerous benefits in adopting and applying informatics solutions to their workflow: improved operations and positive contributions to disease reporting. If those informatics solutions are [[Cloud computing|cloud-based]] and mobile-friendly, those labs and healthcare systems may see additional benefits such as being able to test people anywhere, making testing more flexible and rapid as a result.<ref name="TWATheEight21">{{cite web |url=https://thirdwaveanalytics.com/blog/8-essential-features-sample-management-lims-in-a-covid-19-testing-lab/ |title=The 8 Essential Features for a Sample Management LIMS in a COVID-19 Testing Lab |author=Third Wave Analytics |publisher=Third Wave Analytics |date=05 September 2021 |accessdate=17 September 2021}}</ref><ref name="TonyCOVID21">{{cite web |url=https://www.labcompare.com/10-Featured-Articles/578098-COVID-19-Testing-Labs-Go-Mobile-by-Leveraging-LIMS/ |title=COVID-19 PCR Testing Labs Go Mobile by Leveraging LIMS |author=Tony, J. |work=Labcompare |date=03 August 2021 |accessdate=17 September 2021}}</ref>
* tightening of delivery and shipping procedures of suspected and confirmed COVID-19 patient samples;
* limiting add-on test requests for suspected and confirmed COVID-19 patients;
* increasing the frequency of disinfection; and
* considering the expanded use of autoclaving before sample disposition.


Additional aspects of operations that laboratory managers may wish to implement include "number of shifts per day, the number of staff per shift, total number of staff accessible to work in the laboratory, shift change frequency, team-splitting arrangements, and fixed work–rest days."<ref name="ChoyChanges20" /> Arranging staff into smaller teams while reducing the consecutive number of shifts worked may reduce risks; however, managers of labs struggling to meet turnaround times may feel like this isn't realistically possible. In the end, the safety of personnel must be of highest importance, even while trying to rapidly and accurately conduct COVID-19 testing.<ref name="ChoyChanges20" />
However, just purchasing a random laboratory informatics solution and putting it to use is no guarantee towards realizing the technology's actual benefits. Careful consideration, discussion, training, and policy adjustment are required to get the most of any new system. It would be beyond the scope of this guide to offer complete advice on acquiring and implementing laboratory informatics solutions. That information can be found in the Association of Public Health Laboratories' ''[[LII:Laboratory Information Systems Project Management: A Guidebook for International Implementations|Laboratory Information Systems Project Management: A Guidebook for International Implementations]]'' or Joe Liscouski's ''[[LII:A Guide for Management: Successfully Applying Laboratory Systems to Your Organization's Work|A Guide for Management: Successfully Applying Laboratory Systems to Your Organization's Work]]''. What follows instead are considerations to make when selecting a solution to assist your organization with [[COVID-19]] (and other types of disease) testing workflows.


==References==
==References==
{{Reflist}}
{{Reflist|colwidth=30em}}
 
==Citation information for this chapter==
'''Chapter''': 3. Adding COVID-19 and other virus testing to your laboratory
 
'''Edition''': Fall 2021
 
'''Title''': ''COVID-19 Testing, Reporting, and Information Management in the Laboratory''
 
'''Author for citation''': Shawn E. Douglas
 
'''License for content''': [https://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International]
 
'''Publication date''': September 2021

Revision as of 20:18, 3 February 2022

Molecular diagnostics qia symphony.jpg

Laboratory computing has positively affected clinical service delivery and laboratory management for decades.[1] These benefits are achieved through automation elements that reduce data entry errors, reduce workloads, collect laboratory instrument data, and check for common errors like duplicate test orders.[2][3] In the world of epidemiological testing, those same laboratory informatics applications—such as laboratory information management systems (LIMS), laboratory information systems (LIS), and hospital information systems (HIS)—provide similar value.

Pandemic response realizes benefits through crisis and risk management systems, syndromic surveillance systems, and medical diagnostic tools. As Norwegian researchers Wilson and Jumbert note about humanitarian technologies and pandemics, "collecting information is central to the implementation of an efficient response, including situational information, needs assessment, and operational information."[4] At the response's core is the valuable reporting of public health data (discussed in the next section). As such, those labs and healthcare systems performing disease testing see numerous benefits in adopting and applying informatics solutions to their workflow: improved operations and positive contributions to disease reporting. If those informatics solutions are cloud-based and mobile-friendly, those labs and healthcare systems may see additional benefits such as being able to test people anywhere, making testing more flexible and rapid as a result.[5][6]

However, just purchasing a random laboratory informatics solution and putting it to use is no guarantee towards realizing the technology's actual benefits. Careful consideration, discussion, training, and policy adjustment are required to get the most of any new system. It would be beyond the scope of this guide to offer complete advice on acquiring and implementing laboratory informatics solutions. That information can be found in the Association of Public Health Laboratories' Laboratory Information Systems Project Management: A Guidebook for International Implementations or Joe Liscouski's A Guide for Management: Successfully Applying Laboratory Systems to Your Organization's Work. What follows instead are considerations to make when selecting a solution to assist your organization with COVID-19 (and other types of disease) testing workflows.

References

  1. Jones, R.G.; Johnson, O.A.; Baststone, G. (2014). "Informatics and the Clinical Laboratory". The Clinical Biochemist Reviews 35 (3): 177–192. PMC PMC4204239. PMID 25336763. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204239. 
  2. Pitkus, A. (2018). "Laboratory Informatics: An Increasingly Valuable Commodity Emerging from Today's Laboratories". ASCLS Today 32 (2). https://ascls.org/laboratory-informatics-an-increasingly-valuable-commodity-emerging-from-today-s-laboratories/. Retrieved 13 September 2021. 
  3. Raeen, M.R. (2018). "How laboratory informatics has impacted healthcare overall". Applied Research Projects 54. doi:10.21007/chp.hiim.0056. https://dc.uthsc.edu/hiimappliedresearch/54. 
  4. Wilson, C.; Jumbert, M.G. (2018). "The new informatics of pandemic response: humanitarian technology, efficiency, and the subtle retreat of national agency". Journal of International Humanitarian Action 3: 8. doi:10.1186/s41018-018-0036-5. PMC PMC7149122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149122. 
  5. Third Wave Analytics (5 September 2021). "The 8 Essential Features for a Sample Management LIMS in a COVID-19 Testing Lab". Third Wave Analytics. https://thirdwaveanalytics.com/blog/8-essential-features-sample-management-lims-in-a-covid-19-testing-lab/. Retrieved 17 September 2021. 
  6. Tony, J. (3 August 2021). "COVID-19 PCR Testing Labs Go Mobile by Leveraging LIMS". Labcompare. https://www.labcompare.com/10-Featured-Articles/578098-COVID-19-Testing-Labs-Go-Mobile-by-Leveraging-LIMS/. Retrieved 17 September 2021.