Difference between revisions of "Template:Article of the week"

From LIMSWiki
Jump to navigationJump to search
(Updated article of the week text)
(Updated article of the week text)
Line 1: Line 1:
<!--<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig9 Brown JMIRMedInfo2020 8-9.png|240px]]</div>//-->
<!--<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Fig9 Brown JMIRMedInfo2020 8-9.png|240px]]</div>//-->
'''"[[Journal:Explainability for artificial intelligence in healthcare: A multidisciplinary perspective|Explainability for artificial intelligence in healthcare: A multidisciplinary perspective]]"'''
'''"[[Journal:Advanced engineering informatics: Philosophical and methodological foundations with examples from civil and construction engineering|Advanced engineering informatics: Philosophical and methodological foundations with examples from civil and construction engineering]]"'''


Explainability is one of the most heavily debated topics when it comes to the application of [[artificial intelligence]] (AI) in healthcare. Even though AI-driven systems have been shown to outperform humans in certain analytical tasks, the lack of explainability continues to spark criticism. Yet, explainability is not a purely technological issue; instead, it invokes a host of medical, legal, ethical, and societal questions that require thorough exploration. This paper provides a comprehensive assessment of the role of explainability in medical AI and makes an ethical evaluation of what explainability means for the adoption of AI-driven tools into clinical practice. Taking AI-based [[clinical decision support system]]s as a case in point, we adopted a multidisciplinary approach to analyze the relevance of explainability for medical AI from the technological, legal, medical, and patient perspectives. Drawing on the findings of this conceptual analysis, we then conducted an ethical assessment using Beauchamp and Childress' ''Principles of Biomedical Ethics'' (autonomy, beneficence, nonmaleficence, and justice) as an analytical framework to determine the need for explainability in medical AI. ('''[[Journal:Explainability for artificial intelligence in healthcare: A multidisciplinary perspective|Full article...]]''')<br />
We argue that the representation and formalization of complex engineering knowledge is the main aim of inquiries in the scientific field of [[Wikipedia:Engineering informatics|advanced engineering informatics]]. We introduce [[Ontology (information science)|ontology]] and logic as underlying methods to formalize [[Information#As an influence which leads to a transformation|knowledge]]. We also suggest that it is important to account for the purpose of engineers and the context they work in while representing and formalizing knowledge. Based on the concepts of ontology, logic, purpose, and context, we discuss different possible research methods and approaches that scholars can use to formalize complex engineering knowledge and to validate whether a specific formalization can support engineers with their complex tasks. On the grounds of this discussion, we suggest that research efforts in advanced engineering should be conducted in a bottom-up manner, closely involving engineering practitioners. We also suggest that researchers make use of social science methods while both eliciting knowledge to formalize and validating that formalized knowledge. ('''[[Journal:Advanced engineering informatics: Philosophical and methodological foundations with examples from civil and construction engineering|Full article...]]''')<br />
<br />
<br />
''Recently featured'':
''Recently featured'':
{{flowlist |
{{flowlist |
* [[Journal:Explainability for artificial intelligence in healthcare: A multidisciplinary perspective|Explainability for artificial intelligence in healthcare: A multidisciplinary perspective]]
* [[Journal:Secure record linkage of large health data sets: Evaluation of a hybrid cloud model|Secure record linkage of large health data sets: Evaluation of a hybrid cloud model]]
* [[Journal:Secure record linkage of large health data sets: Evaluation of a hybrid cloud model|Secure record linkage of large health data sets: Evaluation of a hybrid cloud model]]
* [[Journal:Risk assessment for scientific data|Risk assessment for scientific data]]
* [[Journal:Risk assessment for scientific data|Risk assessment for scientific data]]
* [[Journal:Methods for quantification of cannabinoids: A narrative review|Methods for quantification of cannabinoids: A narrative review]]
}}
}}

Revision as of 19:24, 29 November 2021

"Advanced engineering informatics: Philosophical and methodological foundations with examples from civil and construction engineering"

We argue that the representation and formalization of complex engineering knowledge is the main aim of inquiries in the scientific field of advanced engineering informatics. We introduce ontology and logic as underlying methods to formalize knowledge. We also suggest that it is important to account for the purpose of engineers and the context they work in while representing and formalizing knowledge. Based on the concepts of ontology, logic, purpose, and context, we discuss different possible research methods and approaches that scholars can use to formalize complex engineering knowledge and to validate whether a specific formalization can support engineers with their complex tasks. On the grounds of this discussion, we suggest that research efforts in advanced engineering should be conducted in a bottom-up manner, closely involving engineering practitioners. We also suggest that researchers make use of social science methods while both eliciting knowledge to formalize and validating that formalized knowledge. (Full article...)

Recently featured: