Difference between revisions of "Journal:Energy informatics: Fundamentals and standardization"

From LIMSWiki
Jump to navigationJump to search
(Saving and adding more.)
(Saving and adding more.)
Line 47: Line 47:
===New-generation energy system===
===New-generation energy system===
In 2013, Zhou ''et al.'' proposed a concept of third-generation power grid and new generation energy systems.<ref name="ZhouReview13">{{cite journal |title=Review and Prospect for Power System Development and Related Technologies:a Concept of Three-generation Power Systems |journal=Proceedings of the CSEE |author=Zhou, X.; Chen, S.; Lu, Z. |volume=33 |issue=22 |pages=1–11 |year=2013 |uel=http://en.cnki.com.cn/Article_en/CJFDTotal-ZGDC201322002.htm}}</ref> The third-generation power grid (also generally regarded as a new-generation power system) was launched at the beginning of the 21st century, featuring centralized intelligence and the integration of non-fossil fuel generation. In China, the general objective of constructing such a next-generation energy system is to make efficient use of renewable energy sources and to accelerate the transition of energy consumption in the whole nation.<ref name="ZhouNextGen15">{{cite journal |title=Next generation energy system |journal=Shanxi Electric Power |author=Zhou, X. |volume=20 |issue=9 |year=2015 |pages=1–4}}</ref>
In 2013, Zhou ''et al.'' proposed a concept of third-generation power grid and new generation energy systems.<ref name="ZhouReview13">{{cite journal |title=Review and Prospect for Power System Development and Related Technologies:a Concept of Three-generation Power Systems |journal=Proceedings of the CSEE |author=Zhou, X.; Chen, S.; Lu, Z. |volume=33 |issue=22 |pages=1–11 |year=2013 |uel=http://en.cnki.com.cn/Article_en/CJFDTotal-ZGDC201322002.htm}}</ref> The third-generation power grid (also generally regarded as a new-generation power system) was launched at the beginning of the 21st century, featuring centralized intelligence and the integration of non-fossil fuel generation. In China, the general objective of constructing such a next-generation energy system is to make efficient use of renewable energy sources and to accelerate the transition of energy consumption in the whole nation.<ref name="ZhouNextGen15">{{cite journal |title=Next generation energy system |journal=Shanxi Electric Power |author=Zhou, X. |volume=20 |issue=9 |year=2015 |pages=1–4}}</ref>
===Multi-energy system===
Power system flexibility describes the system's ability to cope with events that may cause imbalances between supply and demand at different time frames while maintaining the system reliability in a cost-effective manner. Interaction with other energy sectors can identify flexibility resources from a power system’s point-of-view. Mancarella<ref name="MancarellaSmart12">{{cite journal |title=Smart Multi-Energy Grids: Concepts, benefits and challenges |journal=IEEE Power and Energy Society General Meeting |author=Mancarella, P. |volume=2012 |pages=22–30 |year=2012 |doi=10.1109/PESGM.2012.6345120}}</ref> presented the concept of multi energy system (MES) and presented several interactions between electricity, heat, gas, hydrogen, transport sector, and so on. In MES, electricity, heat, cooling, fuels, and so on optimally interact with each other at various levels (for instance, within a district, city or region), which represents an important opportunity to improve technical, economic and environmental performance of conventional energy systems.
===Macro energy system===
To ensure the security performance of the system, the upstream primary energy supply system and downstream demand-side energy consumption should be studied at the level of a macro energy system.<ref name="XueEnergy15">{{cite journal |title=Energy internet or comprehensive energy network? |journal=Journal of Modern Power Systems and Clean Energy |author=Xue, Y. |volume=3 |issue=3 |year=2015 |pages=297–301 |doi=10.1007/s40565-015-0111-5}}</ref> Disturbances of external factors such as nature, social, and economic environment may affect the operation of energy systems. Conversely, the security and the stability of an energy system will affect the external environments as well. Therefore, the interactions between an energy system and external environments should be taken into consideration and studied within the context of a macro energy system.<ref name="XueGeneralized13">{{cite journal |title=Generalized congestion of power systems: Insights from the massive blackouts in India |journal=Journal of Modern Power Systems and Clean Energy |author=Xue, Y.; Xiao, S. |volume=1 |issue=2 |year=2013 |pages=91–100 |doi=10.1007/s40565-013-0014-2}}</ref>
==Convergence of energy system and ICT==
===ICT-based energy system===
Frik and Favre-Perrod<ref name="FrikProposal04">{{cite book |title=Proposal for a multifunctional energy bus and its interlink with generation and consumption |author=Frik, R.; Favre-Perrod, P. |publisher=High Voltage Laboratory, Swiss Federal Institute of Technology |year=2004}}</ref> introduced hybrid energy hubs as interfaces among energy producers, consumers, and transportation infrastructure. From a system point-of-view, an energy hub can be identified as a unit that provides the basic features including input/output, conversion, and storage. “Internet of energy,” as a new infrastructure, is an integration of small highly distributed energy production sources and advanced internet technologies. Karnouskos and Terzidis<ref name="KarnouskosTowards07">{{cite journal |title=Towards an information infrastructure for the future Internet of energy |journal=Communications in Distributed Systems |author=Karnouskos, S.; Terzidis, O. |volume=2007 |year=2007 |pages=1–6 |isbn=9783800729807}}</ref>describe information-driven services for a future energy system. Another similar terminology called “Energy Internet,” as a coined terminology, was first presented in 2009.<ref name="RifkinTheThird11">{{cite book |title=The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World |author=Rifkin, J. |publisher=St. Martin's Press |year=2011 |pages=304 |isbn=9780230340589}}</ref>
Friedman<ref name="FriedmanHot08">{{cite book |title=Hot, Flat, and Crowded: Why We Need a Green Revolution--and How It Can Renew America |author=Friedman, T.L. |publisher=Farrar, Straus and Giroux |year=2008 |pages=448 |isbn=9780374166854}}</ref> points out that in the Energy Internet age, hundreds of millions of people producing their own green energy in their homes, offices, and factories, and sharing it with each other in an “energy internet” are behaving similarly to how we now create and share information online. That aside, “energy router” is also described in some works.<ref name="XuEnergy11">{{cite journal |title=Energy router: Architectures and functionalities toward Energy Internet |journal=IEEE International Conference on Smart Grid Communications |author=Xu, Y.; Zhang, J.; Wang, W. et al. |volume=2011 |year=2011 |pages=31–36}}</ref><ref name="CaoEnergy13">{{cite journal |title=Energy Internet -- Towards Smart Grid 2.0 |journal=Fourth International Conference on Networking and Distributed Computing |author=Cao, J.; Yang, M. |volume=2013 |year=2013 |pages=105–10 |doi=10.1109/ICNDC.2013.10}}</ref><ref name="HuangFREEDM09">{{cite journal |title=FREEDM System: Role of power electronics and power semiconductors in developing an energy internet |journal=International Symposium on Power Semiconductor Devices & IC's |author=Huang, A.Q.; Baliga, J. |volume=2009 |year=2009 |pages=9–12 |doi=10.1109/ISPSD.2009.5157988}}</ref>


==References==
==References==

Revision as of 21:59, 18 September 2017

Full article title Energy informatics: Fundamentals and standardization
Journal ICT Express
Author(s) Huang, Biyao; Bai, Xiaomin; Zhou, Zhenyu; Cui,Quansheng; Zhu, Daohua; Hu, Ruwei
Author affiliation(s) China Electric Power Research Institute, Global Energy Interconnection Research Institute,
North China Electric Power University, State Grid Jiangsu Electric Power Research Institute
Primary contact Email: huangby at geiri dot sgcc dot com dot cn
Year published 2017
Volume and issue 3 (2)
Page(s) 76–80
DOI 10.1016/j.icte.2017.05.006
ISSN 2405-9595
Distribution license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Website http://www.sciencedirect.com/science/article/pii/S2405959517300619
Download http://www.sciencedirect.com/science/article/pii/S2405959517300619/pdfft (PDF)

Abstract

Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy systems, and the convergence of energy systems and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

Keywords: Smart energy, ICT, Energy informatics

Introduction

With the changing of global climate and a world energy shortage, a smooth transition from conventional fossil fuel-based energy supplies to renewable energy sources is critical for the sustainable development of human society. Meanwhile, the energy domain is experiencing a paradigmatic change by integrating conventional energy systems with advanced information and communication technologies (ICT), which poses new challenges to the efficient operation and design of energy systems.

From a technical perspective, with the purpose of supplying end-users with energy service comes the design of energy systems.[1] From a structural point of view, all of the components in an energy system have connections with production, transition, delivery, and energy usage.[2] From the view of socioeconomics, an energy system includes energy markets and they treat it as a technical and economic system to satisfy consumers’ demand for energy in forms of heat, fuels, and electricity. Moreover, an energy system is subject to various influences, for instance, business models, markets, regulations, customer behavior and the natural environment. These definitions are related to information from a system (or system of systems) point-of-view.

In the process of smart grid development, most power companies have already deployed plenty of automation and information systems. In order to control and manage the power grid, some power companies have implemented intelligent energy dispatching systems, wide-area measurement systems, grid condition monitoring systems, electric vehicle charging monitoring networks, distribution automation systems, mobile operational applications for condition-based maintenance and advanced metering infrastructure, etc. At the same time, some power companies also have arranged enterprise ERP systems and centralized data centers in order to manage individual businesses effectively and efficiently.

The monitoring system of communication network and information system is isolated to a considerable extent and has failed to form a coordinated ICT (information and communication technology) monitoring system. It is very difficult to conduct a comprehensive analysis and evaluation based on the monitoring data of information and communication network operation. For example, it is unlikely to accurately locate where the fault or alarm occurs in an ICT system, meaning that it cannot adapt to future power grid operation and management needs. In the year 2011, SGCC (State Grid Corporation of China) built a unified ICT operation and monitoring center and put it into operation. This unified ICT operation and monitoring center enables the real-time monitoring of smart grid ICT, unified dispatch of ICT resources, and integrated security defense. The system ensures the security of company information and communication systems security operation.[3]

To promote the integration of energy and information, Richard T. Watson et al. advocated a research agenda to establish a new sub-field named energy informatics, which applies thinking and skills of information systems to increase energy efficiency.[4] Christoph Goebel et al. pointed out that smart energy-saving systems and smart grid are the two main application areas of energy informatics, which is currently evolving into an interdisciplinary research area.[5] Meanwhile, new concepts such as smart grid, smart energy, energy internet, macro energy system, etc., have constantly emerged and have placed new research requirements on the field of energy informatics. Hence, it is necessary to provide a comprehensive review of the fundamentals of energy informatics and the respective standardization progress.

In this paper, energy informatics is a multidisciplinary study, which can perform with a higher accuracy and involve several disciplines. Each of the disciplines provides a different perspective on an energy system's problem or issue, especially a view on energy systems from the view of informatics. Its goal is to use emerging new information and communication technologies to make energy systems increasingly efficient, effective, safe, secure, economical, and relevant.

The paper is structured as follows. Section 2 provides an overview of some typical new concepts of energy systems. In Section 3, we discuss the convergence of energy systems and ICT. Section 4 analyzes the technical fundamentals of energy informatics. Section 5 presents the standardization of energy informatics. Finally, in Section 6, we conclude the paper and present future research directions.

New concepts of energy systems

New-generation energy system

In 2013, Zhou et al. proposed a concept of third-generation power grid and new generation energy systems.[6] The third-generation power grid (also generally regarded as a new-generation power system) was launched at the beginning of the 21st century, featuring centralized intelligence and the integration of non-fossil fuel generation. In China, the general objective of constructing such a next-generation energy system is to make efficient use of renewable energy sources and to accelerate the transition of energy consumption in the whole nation.[7]

Multi-energy system

Power system flexibility describes the system's ability to cope with events that may cause imbalances between supply and demand at different time frames while maintaining the system reliability in a cost-effective manner. Interaction with other energy sectors can identify flexibility resources from a power system’s point-of-view. Mancarella[8] presented the concept of multi energy system (MES) and presented several interactions between electricity, heat, gas, hydrogen, transport sector, and so on. In MES, electricity, heat, cooling, fuels, and so on optimally interact with each other at various levels (for instance, within a district, city or region), which represents an important opportunity to improve technical, economic and environmental performance of conventional energy systems.

Macro energy system

To ensure the security performance of the system, the upstream primary energy supply system and downstream demand-side energy consumption should be studied at the level of a macro energy system.[9] Disturbances of external factors such as nature, social, and economic environment may affect the operation of energy systems. Conversely, the security and the stability of an energy system will affect the external environments as well. Therefore, the interactions between an energy system and external environments should be taken into consideration and studied within the context of a macro energy system.[10]

Convergence of energy system and ICT

ICT-based energy system

Frik and Favre-Perrod[11] introduced hybrid energy hubs as interfaces among energy producers, consumers, and transportation infrastructure. From a system point-of-view, an energy hub can be identified as a unit that provides the basic features including input/output, conversion, and storage. “Internet of energy,” as a new infrastructure, is an integration of small highly distributed energy production sources and advanced internet technologies. Karnouskos and Terzidis[12]describe information-driven services for a future energy system. Another similar terminology called “Energy Internet,” as a coined terminology, was first presented in 2009.[13]

Friedman[14] points out that in the Energy Internet age, hundreds of millions of people producing their own green energy in their homes, offices, and factories, and sharing it with each other in an “energy internet” are behaving similarly to how we now create and share information online. That aside, “energy router” is also described in some works.[15][16][17]

References

  1. Groscurth, H.-M.; Bruckner, Th.; Kümmel, R. (1995). "Modeling of energy-services supply systems". Energy 20 (9): 941–958. doi:10.1016/0360-5442(95)00067-Q. 
  2. Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y. et al., ed. (2014). Climate Change 2014: Mitigation of Climate Change. Cambridge University Press. pp. 1249-1279. ISBN 9781107654815. http://www.ipcc.ch/report/ar5/wg3/. 
  3. Huang, B.Y.; Bai, X.M.; Cui, Q.S. (August 2016). "D2-308: Study on Evolution of Communication Infrastructure for Smart Grid Operation and Management". 2016 CIGRE Session, Paris. http://studylib.net/doc/18838579/technical_programmeaugust2016---pdf---537-kb--. 
  4. Watson, R.T.; Boudreau, M.-T.; Chen, A.J. (2010). "Information systems and environmentally sustainable development: Energy informatics and new directions for the IS community". MIS Quarterly 34 (1): 23–38. 
  5. Goebel, C.; Jacobsen, H.-A.; del Razo, V. et al. (2014). "Energy Informatics - Current and Future Research Directions". Business & Information Systems Engineering 6 (1): 25–31. http://aisel.aisnet.org/bise/vol6/iss1/5/. 
  6. Zhou, X.; Chen, S.; Lu, Z. (2013). "Review and Prospect for Power System Development and Related Technologies:a Concept of Three-generation Power Systems". Proceedings of the CSEE 33 (22): 1–11. 
  7. Zhou, X. (2015). "Next generation energy system". Shanxi Electric Power 20 (9): 1–4. 
  8. Mancarella, P. (2012). "Smart Multi-Energy Grids: Concepts, benefits and challenges". IEEE Power and Energy Society General Meeting 2012: 22–30. doi:10.1109/PESGM.2012.6345120. 
  9. Xue, Y. (2015). "Energy internet or comprehensive energy network?". Journal of Modern Power Systems and Clean Energy 3 (3): 297–301. doi:10.1007/s40565-015-0111-5. 
  10. Xue, Y.; Xiao, S. (2013). "Generalized congestion of power systems: Insights from the massive blackouts in India". Journal of Modern Power Systems and Clean Energy 1 (2): 91–100. doi:10.1007/s40565-013-0014-2. 
  11. Frik, R.; Favre-Perrod, P. (2004). Proposal for a multifunctional energy bus and its interlink with generation and consumption. High Voltage Laboratory, Swiss Federal Institute of Technology. 
  12. Karnouskos, S.; Terzidis, O. (2007). "Towards an information infrastructure for the future Internet of energy". Communications in Distributed Systems 2007: 1–6. ISBN 9783800729807. 
  13. Rifkin, J. (2011). The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World. St. Martin's Press. pp. 304. ISBN 9780230340589. 
  14. Friedman, T.L. (2008). Hot, Flat, and Crowded: Why We Need a Green Revolution--and How It Can Renew America. Farrar, Straus and Giroux. pp. 448. ISBN 9780374166854. 
  15. Xu, Y.; Zhang, J.; Wang, W. et al. (2011). "Energy router: Architectures and functionalities toward Energy Internet". IEEE International Conference on Smart Grid Communications 2011: 31–36. 
  16. Cao, J.; Yang, M. (2013). "Energy Internet -- Towards Smart Grid 2.0". Fourth International Conference on Networking and Distributed Computing 2013: 105–10. doi:10.1109/ICNDC.2013.10. 
  17. Huang, A.Q.; Baliga, J. (2009). "FREEDM System: Role of power electronics and power semiconductors in developing an energy internet". International Symposium on Power Semiconductor Devices & IC's 2009: 9–12. doi:10.1109/ISPSD.2009.5157988. 

Notes

This presentation is faithful to the original, with only a few minor changes to presentation. In some cases important information was missing from the references, and that information was added. The original mis-numbered inline references, and they have been updated for this version. Grammar and spelling were updated for readability and should not constitute "sufficient new creativity to be copyrightable"; no other modifications were made in accordance with the "no derivatives" portion of the distribution license.