Difference between revisions of "Template:Article of the week"
Shawndouglas (talk | contribs) (Updated article of the week text.) |
Shawndouglas (talk | contribs) (Updated article of the week text.) |
||
Line 1: | Line 1: | ||
<div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File: | <div style="float: left; margin: 0.5em 0.9em 0.4em 0em;">[[File:Genome sequencing costs 2011.jpg|250px]]</div> | ||
'''[[ | '''[[Genome informatics]]''' is a field of computational molecular biology and branch of [[Informatics (academic field)|informatics]] that uses computers, software, and computational solution techniques to make observations, resolve problems, and manage data related to the genomic function of DNA sequences, comparison of gene structures, determination of the tertiary structure of all proteins, and other molecular biological activities. The informatics side of genomics has largely focused on analytical tools and methodologies. DNA-microarray and sequencing technology helped researchers for the Human Genome Project, for example, analyze and understand thousands of genes and their expressions. By 2000, artificial neural networks were being theorized as a possible informatics tools to aid with data analysis and the problem of "high dimensionality" of the outputted data; by 2014 artificial neural networks were being proposed for cancer genomic research. | ||
Genome informatics can help tackle problems and tasks such as analyzing DNA sequences, recognizing genes and proteins and predicting their structures, and predicting the biochemical function of new genes or fragments, as well as molecular profiling. ('''[[Genome informatics|Full article...]]''')<br /> | |||
<br /> | <br /> | ||
''Recently featured'': [[Evolutionary informatics]], [[Scientific data management system | ''Recently featured'': [[Cancer informatics]], [[Evolutionary informatics]], [[Scientific data management system]] |
Revision as of 17:10, 2 February 2015
Genome informatics is a field of computational molecular biology and branch of informatics that uses computers, software, and computational solution techniques to make observations, resolve problems, and manage data related to the genomic function of DNA sequences, comparison of gene structures, determination of the tertiary structure of all proteins, and other molecular biological activities. The informatics side of genomics has largely focused on analytical tools and methodologies. DNA-microarray and sequencing technology helped researchers for the Human Genome Project, for example, analyze and understand thousands of genes and their expressions. By 2000, artificial neural networks were being theorized as a possible informatics tools to aid with data analysis and the problem of "high dimensionality" of the outputted data; by 2014 artificial neural networks were being proposed for cancer genomic research.
Genome informatics can help tackle problems and tasks such as analyzing DNA sequences, recognizing genes and proteins and predicting their structures, and predicting the biochemical function of new genes or fragments, as well as molecular profiling. (Full article...)
Recently featured: Cancer informatics, Evolutionary informatics, Scientific data management system